Secretomic analysis of Beauveria bassiana related to cattle tick, Rhipicephalus microplus, infection
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
26/201.445/2014
faperj
26-010.002877/2014
faperj
P41 GM103533-22
National Institutes of Health
PubMed
30361880
DOI
10.1007/s12223-018-0659-3
PII: 10.1007/s12223-018-0659-3
Knihovny.cz E-resources
- MeSH
- Beauveria enzymology genetics MeSH
- Pest Control, Biological MeSH
- Biological Control Agents MeSH
- Fungal Proteins genetics isolation & purification MeSH
- Host-Pathogen Interactions MeSH
- Cattle Diseases parasitology MeSH
- Peptide Hydrolases genetics isolation & purification MeSH
- Proteomics MeSH
- Rhipicephalus microbiology MeSH
- Cattle parasitology MeSH
- Computational Biology MeSH
- Animals MeSH
- Check Tag
- Cattle parasitology MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biological Control Agents MeSH
- Fungal Proteins MeSH
- Peptide Hydrolases MeSH
Beauveria bassiana is widely studied as an alternative to chemical acaricides in controlling the cattle tick Rhipicephalus microplus. Although its biocontrol efficiency has been proved in laboratory and field scales, there is a need to a better understanding of host interaction process at molecular level related to biocontrol activity. In this work, applying a proteomic technique multidimensional protein identification technology (MudPIT), the differential secretome of B. bassiana induced by the host R. microplus cuticle was evaluated. The use of the host cuticle in a culture medium, mimicking an infection condition, is an established experimental model that triggers the secretion of inducible enzymes. From a total of 236 proteins, 50 proteins were identified exclusively in infection condition, assigned to different aspects of infection like host adhesion, cuticle penetration and fungal defense, and stress. Other 32 proteins were considered up- or down-regulated. In order to get a meaningful global view of the secretome, several bioinformatic analyses were performed. Regarding molecular function classification, the highest number of proteins in the differential secretome was assigned in to hydrolase activity, enzyme class of all cuticle-degrading enzymes like lipases and proteases. These activities were also further validated through enzymatic assays. The results presented here reveal dozens of specific proteins and different processes potentially implicated in cattle tick infection improving the understanding of molecular basis of biocontrol of B. bassiana against R. microplus.
See more in PubMed
Nat Biotechnol. 2001 Mar;19(3):242-7 PubMed
Trends Biochem Sci. 2003 Mar;28(3):118-21 PubMed
Microbiology. 2005 Feb;151(Pt 2):361-71 PubMed
Parasitology. 2004;129 Suppl:S389-403 PubMed
J Med Entomol. 2005 May;42(3):346-51 PubMed
Chembiochem. 2007 Feb 12;8(3):289-97 PubMed
Arch Microbiol. 2008 Jan;189(1):81-92 PubMed
J Proteome Res. 2009 Mar;8(3):1123-30 PubMed
Fungal Genet Biol. 2009 May;46(5):353-64 PubMed
J Zhejiang Univ Sci B. 2009 Jun;10(6):434-44 PubMed
Appl Microbiol Biotechnol. 2010 Jan;85(4):975-84 PubMed
Res Microbiol. 2009 Dec;160(10):824-8 PubMed
Toxicon. 2010 Apr 1;55(4):874-80 PubMed
J Invertebr Pathol. 2010 Feb;103(2):132-9 PubMed
Fungal Biol. 2010 Aug;114(8):637-45 PubMed
Fungal Biol. 2010 Jan;114(1):10-5 PubMed
Fungal Genet Biol. 2011 Apr;48(4):343-52 PubMed
J Med Entomol. 2010 Nov;47(6):1107-15 PubMed
Vet Parasitol. 2011 Dec 15;182(2-4):307-18 PubMed
Sci Rep. 2012;2:483 PubMed
Cell Host Microbe. 2012 Oct 18;12(4):484-95 PubMed
Curr Opin Microbiol. 2012 Dec;15(6):653-9 PubMed
J Proteomics. 2013 Jan 14;78:58-71 PubMed
Curr Opin Microbiol. 2012 Dec;15(6):685-91 PubMed
Curr Protoc Bioinformatics. 2012 Dec;Chapter 13:Unit13.19 PubMed
Proteomics. 2013 Feb;13(3-4):597-608 PubMed
Proteomics. 2013 Jun;13(12-13):1913-21 PubMed
PLoS One. 2013 Aug 05;8(8):e70609 PubMed
Appl Microbiol Biotechnol. 2013 Oct;97(19):8683-92 PubMed
Fungal Genet Biol. 2014 Feb;63:55-64 PubMed
Vet Parasitol. 2014 Jun 16;203(1-2):189-96 PubMed
J Proteome Res. 2014 May 2;13(5):2282-96 PubMed
Mol Cell Proteomics. 2014 Aug;13(8):2101-13 PubMed
Rev Bras Parasitol Vet. 2014 Apr-Jun;23(2):150-6 PubMed
Braz J Microbiol. 2014 Aug 29;45(2):551-7 PubMed
BMC Genomics. 2014 Sep 29;15:822 PubMed
Parasitol Res. 2015 Jan;114(1):219-25 PubMed
Malar J. 2014 Dec 06;13:479 PubMed
J Proteomics. 2015 Mar 18;117:70-85 PubMed
Vet Parasitol. 2015 Jan 30;207(3-4):302-8 PubMed
J Appl Ecol. 2015 Dec 1;52(6):1558-1566 PubMed
Sci Rep. 2016 Feb 03;6:20566 PubMed
Curr Genet. 2016 Aug;62(3):533-45 PubMed
Environ Microbiol Rep. 2016 Apr;8(2):295-304 PubMed
PLoS One. 2016 Apr 07;11(4):e0153007 PubMed
Front Plant Sci. 2016 Aug 03;7:1096 PubMed
World J Microbiol Biotechnol. 2016 Nov;32(11):177 PubMed
Insects. 2016 Oct 14;7(4): PubMed
Med Vet Entomol. 2017 Mar;31(1):15-22 PubMed
Front Public Health. 2016 Nov 09;4:239 PubMed
J Invertebr Pathol. 2017 May;145:45-54 PubMed
Folia Microbiol (Praha). 2018 Jan;63(1):13-16 PubMed
Evol Appl. 2017 Apr 14;10(5):433-443 PubMed
Sci Rep. 2017 Sep 5;7(1):10410 PubMed
Front Microbiol. 2017 Sep 20;8:1807 PubMed
Front Microbiol. 2017 Dec 11;8:2394 PubMed
J Invertebr Pathol. 2018 Jan 12;:null PubMed
Ticks Tick Borne Dis. 2018 Jul;9(5):1364-1371 PubMed
Ann Trop Med Parasitol. 1986 Apr;80(2):245-9 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed