Erg6 gene is essential for stress adaptation in Kluyveromyces lactis
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30398655
DOI
10.1093/femsle/fny265
PII: 5162844
Knihovny.cz E-zdroje
- MeSH
- delece genu MeSH
- fungální proteiny genetika metabolismus MeSH
- fyziologická adaptace * MeSH
- kationické antimikrobiální peptidy metabolismus MeSH
- Kluyveromyces účinky léků enzymologie genetika fyziologie MeSH
- kyseliny karboxylové toxicita MeSH
- methyltransferasy genetika metabolismus MeSH
- osmotický tlak MeSH
- regulace genové exprese u hub * MeSH
- tolerance léku MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fungální proteiny MeSH
- kationické antimikrobiální peptidy MeSH
- kyseliny karboxylové MeSH
- methyltransferasy MeSH
We investigated the effect of Kluyveromyces lactis ERG6 gene deletion on plasma membrane function and showed increased susceptibility of mutant cells to salt stress, cationic drugs and weak organic acids. Contrary to Saccharomyces cerevisiae, Klerg6 mutant cells exhibited increased tolerance to tunicamycin. The content of cell wall polysacharides did not significantly vary between wild-type and mutant cells. Although the expression of the NAD+-dependent glycerol 3-phosphate dehydrogenase (KlGPD1) in the Klerg6 mutant cells was only half of that in the parental strain, it was induced in the presence of calcofluor white. Also, cells exposed to this drug accumulated glycerol. The absence of KlErg6p led to plasma membrane hyperpolarization but had no statistically significant influence on the plasma membrane fluidity. We propose that the phenotype of Klerg6 mutant cells to a large extent was a result of the reduced activity of specific plasma membrane proteins that require proper lipid composition for full activity.
Faculty of Mathematics and Physics Charles University Ke Karlovu 2027 3 121 16 Prague Czech Republic
Citace poskytuje Crossref.org
The UPC2 gene in Kluyveromyces lactis stress adaptation