Cluster sets vs. traditional sets: Levelling out the playing field using a power-based threshold

. 2018 ; 13 (11) : e0208035. [epub] 20181126

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30475910

Cluster sets allow for velocity and power output maintenance, but the literature routinely uses highly fatiguing traditional set protocols. Although such studies have merit, others suggest fatigue should be avoided when training to improve power output, making those cluster set studies less practical. Therefore, the purpose of this study was to compare these set structures when truncating sets using a power-based threshold. Nine males (23.4 ± 0.6 yr) with various sport backgrounds performed 6 sets of back squats with individualized loads that elicited the greatest mean power (MPmax) output (112.7 ± 12.1% of body mass). Each set during the traditional set (TS) protocol included as many repetitions as possible until two consecutive repetitions dropped below 90% MPmax, which was followed by 120 s inter-set rest. The design was identical for cluster sets (CS) but with an additional 20 s intra-set rest after every 2 repetitions. The number of repetitions performed, mean velocity, and mean power output, were analyzed using 2(protocol)*6(set) repeated measures ANOVA. The number of repetitions during CS (51.8 ± 14.4) was greater than TS (31.9 ± 3.7) (p = 0.001), but the average velocity (CS = 0.711 ± 0.069, TS = 0.716 ± 0.081 m·s-1; p = 0.732) and power output (CS = 630.3 ± 59.8, TS = 636.0 ± 84.3 W; p = 0.629) of those repetitions were similar. These data indicate that CS are a viable option for increasing training volume during contemporary training where sets are ended when repetitions drop below velocity or power thresholds.

Zobrazit více v PubMed

Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sports Med. 2018;48:765–785. 10.1007/s40279-018-0862-z PubMed DOI

Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports Med. 2011;41:125–146. 10.2165/11538500-000000000-00000 PubMed DOI

Cormie P, McCaulley GO, Triplett NT, McBride JM. Optimal loading for maximal power output during lower-body resistance exercises. Med Sci Sports Exerc. 2007;39:340–349. 10.1249/01.mss.0000246993.71599.bf PubMed DOI

Tufano JJ, Amonette WE. Assisted versus resisted training: which is better for increasing jumping and sprinting? Strength Cond J. 2018;40:106–110.

Tufano JJ, Conlon JA, Nimphius S, Brown LE, Seitz LB, Williamson BD, et al. Maintenance of velocity and power with cluster sets during high-volume back squats. Int J Sports Physiol Perf. 2016;11:885–892. PubMed

Tufano JJ, Brown LE, Haff GG. Theoretical and practical aspects of different cluster set structures: a systematic review. J Strength Cond Res. 2016;31:848–867. PubMed

Tufano JJ, Conlon JA, Nimphius S, Brown LE, Banyard HG, Williamson BD, et al. Cluster sets: permitting greater mechanical stress without decreasing relative velocity. Int J Sports Physiol Perf. 2017;12:463–469. PubMed

Gorostiaga EM, Navarro-Amezqueta I, Calbet JA, Hellsten Y, Cusso R, Guerrero M, et al. Energy metabolism during repeated sets of leg press exercise leading to failure or not. PLoS One. 2012;7:e40621 10.1371/journal.pone.0040621 PubMed DOI PMC

Gorostiaga EM, Navarro-Amezqueta I, Calbet JA, Sanchez-Medina L, Cusso R, Guerrero M, et al. Blood ammonia and lactate as markers of muscle metabolites during leg press exercise. J Strength Cond Res. 2014;28:2775–2785. 10.1519/JSC.0000000000000496 PubMed DOI

Iglesias-Soler E, Carballeira E, Sanchez-Otero T, Mayo X, Fernandez-Del-Olmo M. Performance of maximum number of repetitions with cluster set configuration. Int J Sports Physiol Perf. 2013;9:637–642. PubMed

Haff G, Whitley A, McCoy LB, O'Bryant HS, Kilgore JL, Haff EE, et al. Effects of different set configurations on barbell velocity and displacement during a clean pull. J Strength Cond Res. 2003;17:95–103. PubMed

Moreno SD, Brown LE, Coburn JW, Judelson DA. Effect of cluster sets on plyometric jump power. J Strength Cond Res. 2014;28:2424–2428. 10.1519/JSC.0000000000000585 PubMed DOI

Oliver JM, Kreutzer A, Jenke SC, Phillips MD, Mitchell JB, Jones MT. Velocity drives greater power observed during back squat using cluster sets. J Strength Cond Res. 2016;30:235–243. 10.1519/JSC.0000000000001023 PubMed DOI

Tufano JJ, Conlon JA, Nimphius S, Brown LE, Petkovic A, Frick J, et al. Effects of cluster sets and rest-redistribution on mechanical responses to back squats in trained men. J Human Kinetics. 2017;58:35–43. PubMed PMC

Banyard HG, Nosaka K, Haff GG. Reliability and validity of the load-velocity relationship to predict the 1RM back squat. J Strength Cond Res. 2017;31:1897–1904. 10.1519/JSC.0000000000001657 PubMed DOI

Banyard HG, Nosaka K, Vernon AD, Haff GG. The reliability of individualized load-velocity profiles. Int J Sports Physiol Perf. 2018;13:763–769. PubMed

Banyard HG, Nosaka K, Sato K, Haff GG. Validity of various methods for determining velocity, force, and power in the back squat. Int J Sports Physiol Perf. 2017;12:1170–1176. PubMed

Hughes LJ, Banyard HG, Dempsey AR, Scott BR. Using load-velocity relationships to predict 1rm in free-weight exercise: a comparison of the different methods. J Strength Cond Res. 2018; 10.1519/JSC.0000000000002550 PubMed DOI

González-Badillo JJ, Marques Má C, Sánchez-Medina L. The importance of movement velocity as a measure to control resistance training intensity. J Hum Kinetics. 2011;29A:15–9. 10.2478/v10078-011-0053-6 PubMed DOI PMC

Jovanović M, Flanagan EP. Researched applications of velocity based strength training. J Aust Strength Cond. 2014;22:58–69.

Pareja-Blanco F, Rodriguez-Rosell D, Sanchez-Medina L, Sanchis-Moysi J, Dorado C, Mora-Custodio R, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017; 27:724–735. 10.1111/sms.12678 PubMed DOI

Padulo J, Mignogna P, Mignardi S, Tonni F, D'Ottavio S. Effect of different pushing speeds on bench press. Int J Sports Med. 2012;33:376–380. 10.1055/s-0031-1299702 PubMed DOI

Hansen KT, Cronin JB, Newton MJ. The effect of cluster loading on force, velocity, and power during ballistic jump squat training. Int J Sports Physiol Perf. 2011;6:455–468. PubMed

Tufano JJ, Conlon JA, Nimphius S, Oliver JM, Kreutzer A, Haff GG. Different cluster sets result In similar metabolic, endocrine, and perceptual responses in trained men. J Strength Cond Res. 2017; 10.1519/JSC.0000000000001898 PubMed DOI

Hardee JP, Triplett NT, Utter AC, Zwetsloot KA, McBride JM. Effect of interrepetition rest on power output in the power clean. J Strength Cond Res. 2012;26:883–889. 10.1519/JSC.0b013e3182474370 PubMed DOI

García-Ramos A, Padial P, Haff GG, Argüelles-Cienfuegos J, García-Ramos M, Conde-Pipó J, et al. Effect of different inter-repetition rest periods on barbell velocity loss during the ballistic bench press exercise. J Strength Cond Res. 2015; 9:2388–2296. PubMed

Tihanyi J. Az izmok élettani és biomechanikai tulajdonságainak változtatási lehetőségei edzéssel. In: Magyar edző. 2, p. 4–10, 1998.

Kampmiller T, Vanderka M. Silové schopnosti a ich rozvoj. Kamomiller V, Laczo, and Peracek, editor. Bratislava2012.

Vanderka M, Longová K, Olász D, Krčmár M, Walker S. Improved maximum strength, vertical jump and sprint performance after 8 weeks of jump squat training with individualized loads. J Sports Sci Med. 2016;15:492–500. PubMed PMC

Buzgo G. Východiská uplatnenia drepu v pohybovej a kondičnej príprave. Strength Training in Weightlifting, Innovative Approaches in Strength and Performance Improvement. Bratislava: ICM Agency; 2014.

Joy JM, Oliver JM, McCleary SA, Lowery RP, Wilson JM. Power output and electromyography activity of the back squat exercise with cluster sets. J Sports Sci. 2013;1:37–45.

Oliver JM, Kreutzer A, Jenke S, Phillips MD, Mitchell JB, Jones MT. Acute response to cluster sets in trained and untrained men. Eur J Appl Physiol. 2015; 115:2383–2393. 10.1007/s00421-015-3216-7 PubMed DOI

Vanderka M, Krcmar M, Longova K, Walker S. Acute effects of loaded half-squat jumps on sprint running speed in track and field athletes and soccer players. J Strength Cond Res. 2016;30:1540–1546. 10.1519/JSC.0000000000001259 PubMed DOI

Jennings CL, Viljoen W, Durandt J, Lambert MI. The reliability of the FitroDyne as a measure of muscle power. J Strength Cond Res. 2005;19:859–863. 10.1519/R-15984.1 PubMed DOI

Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behavior research methods. 2009;41(4):1149–60. 10.3758/BRM.41.4.1149 PubMed DOI

Nóbrega SR, Libardi CA. Is resistance training to muscular failure necessary? Front Physiol. 2016;7:10 10.3389/fphys.2016.00010 PubMed DOI PMC

Drinkwater EJ, Lawton TW, McKenna MJ, Lindsell RP, Hunt PH, Pyne DB. Increased number of forced repetitions does not enhance strength development with resistance training. J Strength Cond Res. 2007;21:841–847. 10.1519/R-20666.1 PubMed DOI

Iglesias-Soler E, Carballeira E, Sanchez-Otero T, Mayo X, Jimenez A, Chapman ML. Acute effects of distribution of rest between repetitions. Int J Sports Med. 2012;33:351–358. 10.1055/s-0031-1299699 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...