The effect of resistance training set configuration on strength and muscular performance adaptations in male powerlifters
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie
PubMed
33846516
PubMed Central
PMC8041766
DOI
10.1038/s41598-021-87372-y
PII: 10.1038/s41598-021-87372-y
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- longitudinální studie MeSH
- mladý dospělý MeSH
- odporový trénink metody MeSH
- svalová síla * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
The purpose of this study was to determine the effects of different set configurations on strength and muscular performance adaptations after an 8-week resistance training program. Twenty-four male powerlifters participated in this study and were randomly assigned to one of two resistance training groups: (1) cluster sets (CS: n = 8), (2), traditional sets (TS: n = 8), and a control group (CG: n = 8). All powerlifters were evaluated for thigh and arm circumference, upper and lower body impulsive activities, and 1 repetition maximum (1RM) in the back squat, bench press, and deadlift prior to and after the 8-week training intervention. After training, both the CS and TS groups increased arm and thigh circumferences and decreased body fat. The CS group resulted in greater increases in upper and lower body impulsive activities than the TS group, respectively. In addition, the CS and TS groups indicated similar changes in 1RM bench press, back squat, and deadlift following the 8 weeks training intervention. These results suggest that cluster sets induce adaptive changes that favor impulsive activities in powerlifters.
Department of Physical Education and Sport Sciences Payame Noor University Tehran Iran
Faculty of Physical Education and Sport Charles University Prague Czechia
Zobrazit více v PubMed
Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35:339–361. doi: 10.2165/00007256-200535040-00004. PubMed DOI
Fleck SJ, Kraemer WJ. Designing Resistance Training Programs. 3. Human Kinetics; 2004.
Arazi H, Khanmohammadi A, Asadi A, Haff GG. The effects of resistance training set configuration on strength, power and hormone adaptation in female volleyball players. Appl. Physiol Nut. Met. 2018;43:154–164. doi: 10.1139/apnm-2017-0327. PubMed DOI
Asadi A, Ramirez-Campillo R. Effects of cluster vs. traditional plyometric training sets on maximal-intensity exercise performance. Medicina. 2016;52:41–45. doi: 10.1016/j.medici.2016.01.001. PubMed DOI
Tufano JJ, Conlon JA, Nimphius S. Cluster sets maintain velocity and power during high-volume back squats. Int. J Sports Physiol. Perform. 2016;11:885–892. doi: 10.1123/ijspp.2015-0602. PubMed DOI
Tufano JJ, Halaj M, Kampmiller T, Novosad A, Buzgo G. Cluster sets vs. traditional sets: levelling out the playing field using a power-based threshold. PLoS ONE. 2018;13:e0208035. doi: 10.1371/journal.pone.0208035. PubMed DOI PMC
Haff GG, Burgess S, Stone MH. Cluster training: theoretical and practical applications for the strength and conditioning professional. Strength. Cond J. 2008;12:12–17.
Haff GG, Hobbs RT, Haff EE, et al. Cluster training: a novel method for introducing training program variation. Strength. Cond. J. 2008;30:67–76. doi: 10.1519/SSC.0b013e31816383e1. DOI
Tufano JJ, Brown LE, Haff GG. Theoretical and practical aspects of different cluster set structures: a systematic review. J. Strength Cond. Res. 2017;31:848–867. doi: 10.1519/JSC.0000000000001581. PubMed DOI
Oliver JM, Jagim AR, Sanchez AC. Greater gains in strength and power with intraset rest intervals in hypertrophic training. J. Strength Cond. Res. 2013;27:3116–3131. doi: 10.1519/JSC.0b013e3182891672. PubMed DOI
Morales-Artacho AJ, Padial P, García-Ramos A, Pérez-Castilla A, Feriche B. Influence of a cluster set configuration on the adaptations to short-term power training. J. Strength Cond. Res. 2018;32:930–937. doi: 10.1519/JSC.0000000000001925. PubMed DOI
Rooney KJ, Herbert RD, Balnave RJ. Fatigue contributes to the strength training stimulus. Med. Sci. Sports Exerc. 1994;26:1160–1164. PubMed
Jukic I, Tufano JJ. Rest redistribution functions as a free and ad-hoc equivalent to commonly used velocity-based training thresholds during clean pulls at different loads. J. Human Kin. 2019;68:5–16. doi: 10.2478/hukin-2019-0052. PubMed DOI PMC
Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scan. J. Med. Sci. Sports. 2017;27:724–735. doi: 10.1111/sms.12678. PubMed DOI
Pareja-Blanco F, Sánchez-Medina L, Suárez-Arrones L, González-Badillo JJ. Effects of velocity loss during resistance training on performance in professional soccer players. Int. J. Sports Physiol. Perform. 2017;12:512–519. doi: 10.1123/ijspp.2016-0170. PubMed DOI
Lawton T, Cronin J, Drinkwater E. The effect of continuous repetition training and intra-set rest training on bench press strength and power. J. Sports Med. Phys. Fitness. 2004;44:361–367. PubMed
Kraemer WJ, Mazzetti SA, Nindl BC. Effect of resistance training on women's strength/power and occupational performances. Med. Sci Sports Exerc. 2001;33:1011–1025. doi: 10.1097/00005768-200106000-00022. PubMed DOI
Iglesias-Soler E, Carballeira E, Sanchez-Otero T. Performance of maximum number of repetitions with cluster-set configuration. Int. J. Sports Physiol. Perform. 2014;9:637–642. doi: 10.1123/ijspp.2013-0246. PubMed DOI
Häkkinen K, Pakarinen A, Alen M. Serum hormones during prolonged training of neuromuscular performance. Eur. J. Appl. Physiol. Occup. Physiol. 1985;53:287–293. doi: 10.1007/BF00422840. PubMed DOI
Häkkinen K, Pakarinen A, Kallinen M. Neuromuscular adaptations and serum hormones in women during short-term intensive strength training. Eur. J. Appl. Physiol. Occup. Physiol. 1992;64:106–111. doi: 10.1007/BF00717946. PubMed DOI
Carroll KM, Bernards JR, Bazyler CD, Taber CB, Stuart CA, DeWeese BH, Sato K, Stone MH. Divergent performance outcomes following resistance training using repetition maximums or relative intensity. Int. J. Sports Physiol. Perform. 2019;14:46–54. doi: 10.1123/ijspp.2018-0045. PubMed DOI
Arazi H, Asadi A, Roohi S. Enhancing muscular performance in women: compound versus complex, traditional resistance and plyometric training alone. J. Musc. Res. 2014;17(1450007):1–10.
Arazi H, Damirchi A, Asadi A. Age-related muscle circumference, strength development and hormonal adaptations with 8 weeks moderate intensity resistance training. Ann. Endo. 2013;74:30–35. doi: 10.1016/j.ando.2012.11.004. PubMed DOI
Pritchard H, Keogh J, Barnes M, McGuigan M. Effects and mechanisms of tapering in maximizing muscular strength. Strength Cond. J. 2015;37:72–83. doi: 10.1519/SSC.0000000000000125. DOI
Jackson AS, Pollock ML. Practical assessment of body composition. Phys. Sports Med. 1985;13:82–90. doi: 10.1080/00913847.1985.11708790. PubMed DOI
Eston R, Reilly T. Kinanthropometry and Exercise Physiology Laboratory Manual: Tests, Procedures and Data. Volume 1: Anthropometry. Routledge; 2009.
Haff GG, Triplett N. Essentials of Strength Training and Conditioning. Human Kinetic; 2016.
Harris C, Wattles AP, DeBeliso M, Sevene-Adams PG, Berning JM, Adams KJ. The seated medicine ball throw as a test of upper body power in older adults. J. Strength Cond. Res. 2011;25:2344–2348. doi: 10.1519/JSC.0b013e3181ecd27b. PubMed DOI
Harman EA, Rosenstein MT, Frykman P, Kraemer WJ. Estimation of human power ourput from maximal vertical jump and body mass. J. Strength Cond. Res. 1991;5(22):116–120.
Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 2013;4:863. doi: 10.3389/fpsyg.2013.00863. PubMed DOI PMC
Hopkins WG, Marshall S, Batterham A. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009;41:3–13. doi: 10.1249/MSS.0b013e31818cb278. PubMed DOI