Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures

. 2018 Nov 27 ; 23 (12) : . [epub] 20181127

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30486389

Grantová podpora
MSMT-5727/2018-2 Ministerstvo Školství, Mládeže a Tělovýchovy
14.587.21.0049 Ministry of Education and Science of the Russian Federation

Pharmacophore modeling is a widely used strategy for finding new hit molecules. Since not all protein targets have available 3D structures, ligand-based approaches are still useful. Currently, there are just a few free ligand-based pharmacophore modeling tools, and these have a lot of restrictions, e.g., using a template molecule for alignment. We developed a new approach to 3D pharmacophore representation and matching which does not require pharmacophore alignment. This representation can be used to quickly find identical pharmacophores in a given set. Based on this representation, a 3D pharmacophore ligand-based modeling approach to search for pharmacophores which preferably match active compounds and do not match inactive ones was developed. The approach searches for 3D pharmacophore models starting from 2D structures of available active and inactive compounds. The implemented approach was successfully applied for several retrospective studies. The results were compared to a 2D similarity search, demonstrating some of the advantages of the developed 3D pharmacophore models. Also, the generated 3D pharmacophore models were able to match the 3D poses of known ligands from their protein-ligand complexes, confirming the validity of the models. The developed approach is available as an open-source software tool: http://www.qsar4u.com/pages/pmapper.php and https://github.com/meddwl/psearch.

Erratum v

PubMed

Zobrazit více v PubMed

Schuster D., Nashev L.G., Kirchmair J., Laggner C., Wolber G., Langer T., Odermatt A. Discovery of Nonsteroidal 17β-Hydroxysteroid Dehydrogenase 1 Inhibitors by Pharmacophore-Based Screening of Virtual Compound Libraries. J. Med. Chem. 2008;51:4188–4199. doi: 10.1021/jm800054h. PubMed DOI

Hinsberger S., Hüsecken K., Groh M., Negri M., Haupenthal J., Hartmann R.W. Discovery of Novel Bacterial RNA Polymerase Inhibitors: Pharmacophore-Based Virtual Screening and Hit Optimization. J. Med. Chem. 2013;56:8332–8338. doi: 10.1021/jm400485e. PubMed DOI

Krautscheid Y., Senning C.J.Å., Sartori S.B., Singewald N., Schuster D., Stuppner H. Pharmacophore Modeling, Virtual Screening, and in Vitro Testing Reveal Haloperidol, Eprazinone, and Fenbutrazate as Neurokinin Receptors Ligands. J. Chem. INF. 2014;54:1747–1757. doi: 10.1021/ci500106z. PubMed DOI

Polishchuk P.G., Samoylenko G.V., Khristova T.M., Krysko O.L., Kabanova T.A., Kabanov V.M., Kornylov A.Y., Klimchuk O., Langer T., Andronati S.A., et al. Design, Virtual Screening, and Synthesis of Antagonists of αIIbβ3 as Antiplatelet Agents. J. Med. Chem. 2015;58:7681–7694. doi: 10.1021/acs.jmedchem.5b00865. PubMed DOI

Vuorinen A., Schuster D. Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling. Methods. 2015;71:113–134. doi: 10.1016/j.ymeth.2014.10.013. PubMed DOI

Jones G. GAPE: An Improved Genetic Algorithm for Pharmacophore Elucidation. J. Chem. INF. 2010;50:2001–2018. doi: 10.1021/ci100194k. PubMed DOI

Korb O., Monecke P., Hessler G., Stützle T., Exner T.E. pharmACOphore: Multiple Flexible Ligand Alignment Based on Ant Colony Optimization. J. Chem. INF. 2010;50:1669–1681. doi: 10.1021/ci1000218. PubMed DOI

Patel Y., Gillet V.J., Bravi G., Leach A.R. A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP. J Comput. Aid. Mol. Des. 2002;16:653–681. doi: 10.1023/A:1021954728347. PubMed DOI

Martin Y.C., Bures M.G., Danaher E.A., DeLazzer J., Lico I., Pavlik P.A. A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J Comput. Aid. Mol. Des. 1993;7:83–102. doi: 10.1007/BF00141577. PubMed DOI

Wolber G., Dornhofer A.A., Langer T. Efficient overlay of small organic molecules using 3D pharmacophores. J. Comput. Aid. Mol. Des. 2006;20:773–788. doi: 10.1007/s10822-006-9078-7. PubMed DOI

Richmond N.J., Abrams C.A., Wolohan P.R.N., Abrahamian E., Willett P., Clark R.D. GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D. J Comput. Aid. Mol. Des. 2006;20:567–587. doi: 10.1007/s10822-006-9082-y. PubMed DOI

Schneidman-Duhovny D., Dror O., Inbar Y., Nussinov R., Wolfson H.J. PharmaGist: A webserver for ligand-based pharmacophore detection. Nucleic Acids Res. 2008;36:W223–W228. doi: 10.1093/nar/gkn187. PubMed DOI PMC

Schreyer A.M., Blundell T. USRCAT: Real-time ultrafast shape recognition with pharmacophoric constraints. J. Cheminformatics. 2012;4:27. doi: 10.1186/1758-2946-4-27. PubMed DOI PMC

Koes D.R., Camacho C.J. Pharmer: Efficient and Exact Pharmacophore Search. J. Chem. INF. 2011;51:1307–1314. doi: 10.1021/ci200097m. PubMed DOI PMC

Morgan H.L. The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. J. Chem. Documentation. 1965;5:107–113. doi: 10.1021/c160017a018. DOI

Butina D. Unsupervised Data Base Clustering Based on Daylight’s Fingerprint and Tanimoto Similarity: A Fast and Automated Way To Cluster Small and Large Data Sets. J. Chem. Inf. Comput. Sci. 1999;39:747–750. doi: 10.1021/ci9803381. DOI

Halgren T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996;17:490–519. doi: 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...