Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
MSMT-5727/2018-2
Ministerstvo Školství, Mládeže a Tělovýchovy
14.587.21.0049
Ministry of Education and Science of the Russian Federation
PubMed
31757043
PubMed Central
PMC6929024
DOI
10.3390/ijms20235834
PII: ijms20235834
Knihovny.cz E-resources
- Keywords
- molecular dynamics, pharmacophore, virtual screening,
- MeSH
- Cyclin-Dependent Kinase 2 chemistry metabolism MeSH
- Protein Kinase Inhibitors chemistry pharmacology MeSH
- Small Molecule Libraries chemistry pharmacology MeSH
- Humans MeSH
- Ligands MeSH
- Drug Discovery methods MeSH
- Computer Simulation MeSH
- Molecular Dynamics Simulation * MeSH
- Molecular Docking Simulation methods MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cyclin-Dependent Kinase 2 MeSH
- Protein Kinase Inhibitors MeSH
- Small Molecule Libraries MeSH
- Ligands MeSH
Pharmacophore models are widely used for the identification of promising primary hits in compound large libraries. Recent studies have demonstrated that pharmacophores retrieved from protein-ligand molecular dynamic trajectories outperform pharmacophores retrieved from a single crystal complex structure. However, the number of retrieved pharmacophores can be enormous, thus, making it computationally inefficient to use all of them for virtual screening. In this study, we proposed selection of distinct representative pharmacophores by the removal of pharmacophores with identical three-dimensional (3D) pharmacophore hashes. We also proposed a new conformer coverage approach in order to rank compounds using all representative pharmacophores. Our results for four cyclin-dependent kinase 2 (CDK2) complexes with different ligands demonstrated that the proposed selection and ranking approaches outperformed the previously described common hits approach. We also demonstrated that ranking, based on averaged predicted scores obtained from different complexes, can outperform ranking based on scores from an individual complex. All developments were implemented in open-source software pharmd.
See more in PubMed
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Hritz J., de Ruiter A., Oostenbrink C. Impact of Plasticity and Flexibility on Docking Results for Cytochrome P450 2D6: A Combined Approach of Molecular Dynamics and Ligand Docking. J. Med. Chem. 2008;51:7469–7477. doi: 10.1021/jm801005m. PubMed DOI
Campbell A.J., Lamb M.L., Joseph-McCarthy D. Ensemble-Based Docking Using Biased Molecular Dynamics. J. Chem. Inf. Modeling. 2014;54:2127–2138. doi: 10.1021/ci400729j. PubMed DOI
Choudhury C., Priyakumar U.D., Sastry G.N. Dynamics Based Pharmacophore Models for Screening Potential Inhibitors of Mycobacterial Cyclopropane Synthase. J. Chem. Inf. Modeling. 2015;55:848–860. doi: 10.1021/ci500737b. PubMed DOI
Sohn Y.-s., Park C., Lee Y., Kim S., Thangapandian S., Kim Y., Kim H.-H., Suh J.-K., Lee K.W. Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. J. Mol. Graph. Model. 2013;46:1–9. doi: 10.1016/j.jmgm.2013.08.012. PubMed DOI
Spyrakis F., Benedetti P., Decherchi S., Rocchia W., Cavalli A., Alcaro S., Ortuso F., Baroni M., Cruciani G. A Pipeline To Enhance Ligand Virtual Screening: Integrating Molecular Dynamics and Fingerprints for Ligand and Proteins. J. Chem. Inf. Modeling. 2015;55:2256–2274. doi: 10.1021/acs.jcim.5b00169. PubMed DOI
Wieder M., Garon A., Perricone U., Boresch S., Seidel T., Almerico A.M., Langer T. Common Hits Approach: Combining Pharmacophore Modeling and Molecular Dynamics Simulations. J. Chem. Inf. Modeling. 2017;57:365–385. doi: 10.1021/acs.jcim.6b00674. PubMed DOI
Kutlushina A., Khakimova A., Madzhidov T., Polishchuk P. Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. Molecules. 2018;23:3094. doi: 10.3390/molecules23123094. PubMed DOI PMC
Mysinger M.M., Carchia M., Irwin J.J., Shoichet B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 2012;55:6582–6594. doi: 10.1021/jm300687e. PubMed DOI PMC
Landrum G. RDKit: Open-Source Cheminformatics Software. [(accessed on 2 November 2019)]; Available online: https://www.rdkit.org.
Sayle K.L., Bentley J., Boyle F.T., Calvert A.H., Cheng Y., Curtin N.J., Endicott J.A., Golding B.T., Hardcastle I.R., Jewsbury P., et al. Structure-Based design of 2-Arylamino-4-cyclohexylmethyl-5-nitroso-6-aminopyrimidine inhibitors of cyclin-Dependent kinases 1 and 2. Bioorganic Med. Chem. Lett. 2003;13:3079–3082. doi: 10.1016/S0960-894X(03)00651-6. PubMed DOI
Pratt D.J., Bentley J., Jewsbury P., Boyle F.T., Endicott J.A., Noble M.E.M. Dissecting the Determinants of Cyclin-Dependent Kinase 2 and Cyclin-Dependent Kinase 4 Inhibitor Selectivity. J. Med. Chem. 2006;49:5470–5477. doi: 10.1021/jm060216x. PubMed DOI
Coxon C.R., Anscombe E., Harnor S.J., Martin M.P., Carbain B., Golding B.T., Hardcastle I.R., Harlow L.K., Korolchuk S., Matheson C.J., et al. Cyclin-Dependent Kinase (CDK) Inhibitors: Structure–Activity Relationships and Insights into the CDK-2 Selectivity of 6-Substituted 2-Arylaminopurines. J. Med. Chem. 2017;60:1746–1767. doi: 10.1021/acs.jmedchem.6b01254. PubMed DOI PMC
Choong I.C., Serafimova I., Fan J., Stockett D., Chan E., Cheeti S., Lu Y., Fahr B., Pham P., Arkin M.R., et al. A diaminocyclohexyl analog of SNS-032 with improved permeability and bioavailability properties. Bioorganic Med. Chem. Lett. 2008;18:5763–5765. doi: 10.1016/j.bmcl.2008.09.073. PubMed DOI
Fan J., Fahr B., Stockett D., Chan E., Cheeti S., Serafimova I., Lu Y., Pham P., Walker D.H., Hoch U., et al. Modifications of the isonipecotic acid fragment of SNS-032: Analogs with improved permeability and lower efflux ratio. Bioorganic Med. Chem. Lett. 2008;18:6236–6239. doi: 10.1016/j.bmcl.2008.09.099. PubMed DOI
Wang S., Griffiths G., Midgley C.A., Barnett A.L., Cooper M., Grabarek J., Ingram L., Jackson W., Kontopidis G., McClue S.J., et al. Discovery and Characterization of 2-Anilino-4- (Thiazol-5-yl)Pyrimidine Transcriptional CDK Inhibitors as Anticancer Agents. Chem. Biol. 2010;17:1111–1121. doi: 10.1016/j.chembiol.2010.07.016. PubMed DOI
Chu X.-J., DePinto W., Bartkovitz D., So S.-S., Vu B.T., Packman K., Lukacs C., Ding Q., Jiang N., Wang K., et al. Discovery of [4-Amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6- methoxyphenyl)methanone (R547), A Potent and Selective Cyclin-Dependent Kinase Inhibitor with Significant in Vivo Antitumor Activity. J. Med. Chem. 2006;49:6549–6560. doi: 10.1021/jm0606138. PubMed DOI
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Abraham M.J., van der Spoel D., Lindahl E., Hess B., The GROMACS Development Team GROMACS User Manual Version 2016. [(accessed on 18 November 2019)]; Available online: www.gromacs.org.
Ponder J.W., Case D.A. Advances in Protein Chemistry. Volume 66. Academic Press; Cambridge, MA, USA: 2003. Force Fields for Protein Simulations; pp. 27–85. PubMed
Wang J., Wang W., Kollman P.A., Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006;25:247–260. doi: 10.1016/j.jmgm.2005.12.005. PubMed DOI
Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Lemkul J. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1. 0] Living J. Comput. Mol. Sci. 2018;1:5068. doi: 10.33011/livecoms.1.1.5068. DOI
McGibbon R.T., Beauchamp K.A., Harrigan M.P., Klein C., Swails J.M., Hernández C.X., Schwantes C.R., Wang L.P., Lane T.J., Pande V.S. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015;109:1528–1532. doi: 10.1016/j.bpj.2015.08.015. PubMed DOI PMC
Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–W447. doi: 10.1093/nar/gkv315. PubMed DOI PMC
Probabilistic Approach for Virtual Screening Based on Multiple Pharmacophores