Probabilistic Approach for Virtual Screening Based on Multiple Pharmacophores
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTARF18013
Ministerstvo Školství, Mládeže a Tělovýchovy
14.587.21.0049
Ministry of Science and Higher Education of the Russian Federation
PubMed
31963467
PubMed Central
PMC7024325
DOI
10.3390/molecules25020385
PII: molecules25020385
Knihovny.cz E-zdroje
- Klíčová slova
- ligand-based virtual screening, machine learning, pharmacophores, virtual screening,
- MeSH
- chemické modely MeSH
- léčivé přípravky analýza MeSH
- lidé MeSH
- ligandy MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- počítačová simulace MeSH
- preklinické hodnocení léčiv metody MeSH
- strojové učení MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- léčivé přípravky MeSH
- ligandy MeSH
Pharmacophore modeling is usually considered as a special type of virtual screening without probabilistic nature. Correspondence of at least one conformation of a molecule to pharmacophore is considered as evidence of its bioactivity. We show that pharmacophores can be treated as one-class machine learning models, and the probability the reflecting model's confidence can be assigned to a pharmacophore on the basis of their precision of active compounds identification on a calibration set. Two schemes (Max and Mean) of probability calculation for consensus prediction based on individual pharmacophore models were proposed. Both approaches to some extent correspond to commonly used consensus approaches like the common hit approach or the one based on a logical OR operation uniting hit lists of individual models. Unlike some known approaches, the proposed ones can rank compounds retrieved by multiple models. These approaches were benchmarked on multiple ChEMBL datasets used for ligand-based pharmacophore modeling and externally validated on corresponding DUD-E datasets. The influence of complexity of pharmacophores and their performance on a calibration set on results of virtual screening was analyzed. It was shown that Max and Mean approaches have superior early enrichment to the commonly used approaches. Thus, a well-performing, easy-to-implement, and probabilistic alternative to existing approaches for pharmacophore-based virtual screening was proposed.
Zobrazit více v PubMed
Wermuth C.G., Ganellin C.R., Lindberg P., Mitscher L.A. Glossary of Terms Used in Medicinal Chemistry (IUPAC Recommendations 1998) Pure Appl. Chem. 1998;70:1129–1143. doi: 10.1351/pac199870051129. DOI
Vuorinen A., Schuster D. Methods for Generating and Applying Pharmacophore Models as Virtual Screening Filters and for Bioactivity Profiling. Methods. 2015;71:113–134. doi: 10.1016/j.ymeth.2014.10.013. PubMed DOI
Sliwoski G., Kothiwale S., Meiler J., Lowe E.W. Computational Methods in Drug Discovery. Pharmacol. Rev. 2014;66:334–395. doi: 10.1124/pr.112.007336. PubMed DOI PMC
Wei D., Jiang X., Zhou L., Chen J., Chen Z., He C., Yang K., Liu Y., Pei J., Lai L. Discovery of Multitarget Inhibitors by Combining Molecular Docking with Common Pharmacophore Matching. J. Med. Chem. 2008;51:7882–7888. doi: 10.1021/jm8010096. PubMed DOI
Bowman A.L., Nikolovska-Coleska Z., Zhong H., Wang S., Carlson H.A. Small Molecule Inhibitors of the MDM2-p53 Interaction Discovered by Ensemble-Based Receptor Models. J. Am. Chem. Soc. 2007;129:12809–12814. doi: 10.1021/ja073687x. PubMed DOI
Hinsberger S., Hüsecken K., Groh M., Negri M., Haupenthal J., Hartmann R.W. Discovery of Novel Bacterial RNA Polymerase Inhibitors: Pharmacophore-Based Virtual Screening and Hit Optimization. J. Med. Chem. 2013;56:8332–8338. doi: 10.1021/jm400485e. PubMed DOI
Temml V., Kaserer T., Kutil Z., Landa P., Vanek T., Schuster D. Pharmacophore Modeling for COX-1 and -2 Inhibitors with LigandScout in Comparison to Discovery Studio. Future Med. Chem. 2014;6:1869–1881. doi: 10.4155/fmc.14.114. PubMed DOI
Kurczab R., Bojarski A.J. New Strategy for Receptor-Based Pharmacophore Query Construction: A Case Study for 5-HT7 Receptor Ligands. J. Chem. Inf. Model. 2013;53:3233–3243. doi: 10.1021/ci4005207. PubMed DOI
Wieder M., Garon A., Perricone U., Boresch S., Seidel T., Maria Almerico A., Langer T. Common Hits Approach: Combining Pharmacophore Modeling and Molecular Dynamics Simulations. J. Chem. Inf. Model. 2017;57:365–385. doi: 10.1021/acs.jcim.6b00674. PubMed DOI
Polishchuk P., Kutlushina A., Bashirova D., Mokshyna O., Madzhidov T. Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations. Int. J. Mol. Sci. 2019;20:5834. doi: 10.3390/ijms20235834. PubMed DOI PMC
Moya M.M., Hush D.R. Network Constraints and Multi-Objective Optimization for One-Class Classification. Neural Netw. 1996;9:463–474. doi: 10.1016/0893-6080(95)00120-4. DOI
Varnek A., Baskin I. Machine Learning Methods for Property Prediction in Chemoinformatics: Quo Vadis? J. Chem. Inf. Model. 2012;52:1413–1437. doi: 10.1021/ci200409x. PubMed DOI
Kutlushina A., Khakimova A., Madzhidov T., Polishchuk P. Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. Molecules. 2018;23:3094. doi: 10.3390/molecules23123094. PubMed DOI PMC
Gaulton A., Hersey A., Nowotka M., Bento A.P., Chambers J., Mendez D., Mutowo P., Atkinson F., Bellis L.J., Cibrián-Uhalte E., et al. The ChEMBL Database in 2017. Nucleic Acids Res. 2017;45:D945–D954. doi: 10.1093/nar/gkw1074. PubMed DOI PMC
ChemAxon Standardizer. Chemaxon; Budapest, Hungary: 2019. version 19.12.
RDKit: Open-Source Cheminformatics. 2019.
Mysinger M.M., Carchia M., Irwin J.J., Shoichet B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 2012;55:6582–6594. doi: 10.1021/jm300687e. PubMed DOI PMC
Truchon J.-F., Bayly C.I. Evaluating Virtual Screening Methods: Good and Bad Metrics for the “Early Recognition” Problem. J. Chem. Inf. Model. 2007;47:488–508. doi: 10.1021/ci600426e. PubMed DOI