Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations

. 2019 Nov 20 ; 20 (23) : . [epub] 20191120

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31757043

Grantová podpora
MSMT-5727/2018-2 Ministerstvo Školství, Mládeže a Tělovýchovy
14.587.21.0049 Ministry of Education and Science of the Russian Federation

Pharmacophore models are widely used for the identification of promising primary hits in compound large libraries. Recent studies have demonstrated that pharmacophores retrieved from protein-ligand molecular dynamic trajectories outperform pharmacophores retrieved from a single crystal complex structure. However, the number of retrieved pharmacophores can be enormous, thus, making it computationally inefficient to use all of them for virtual screening. In this study, we proposed selection of distinct representative pharmacophores by the removal of pharmacophores with identical three-dimensional (3D) pharmacophore hashes. We also proposed a new conformer coverage approach in order to rank compounds using all representative pharmacophores. Our results for four cyclin-dependent kinase 2 (CDK2) complexes with different ligands demonstrated that the proposed selection and ranking approaches outperformed the previously described common hits approach. We also demonstrated that ranking, based on averaged predicted scores obtained from different complexes, can outperform ranking based on scores from an individual complex. All developments were implemented in open-source software pharmd.

Zobrazit více v PubMed

Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Hritz J., de Ruiter A., Oostenbrink C. Impact of Plasticity and Flexibility on Docking Results for Cytochrome P450 2D6: A Combined Approach of Molecular Dynamics and Ligand Docking. J. Med. Chem. 2008;51:7469–7477. doi: 10.1021/jm801005m. PubMed DOI

Campbell A.J., Lamb M.L., Joseph-McCarthy D. Ensemble-Based Docking Using Biased Molecular Dynamics. J. Chem. Inf. Modeling. 2014;54:2127–2138. doi: 10.1021/ci400729j. PubMed DOI

Choudhury C., Priyakumar U.D., Sastry G.N. Dynamics Based Pharmacophore Models for Screening Potential Inhibitors of Mycobacterial Cyclopropane Synthase. J. Chem. Inf. Modeling. 2015;55:848–860. doi: 10.1021/ci500737b. PubMed DOI

Sohn Y.-s., Park C., Lee Y., Kim S., Thangapandian S., Kim Y., Kim H.-H., Suh J.-K., Lee K.W. Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. J. Mol. Graph. Model. 2013;46:1–9. doi: 10.1016/j.jmgm.2013.08.012. PubMed DOI

Spyrakis F., Benedetti P., Decherchi S., Rocchia W., Cavalli A., Alcaro S., Ortuso F., Baroni M., Cruciani G. A Pipeline To Enhance Ligand Virtual Screening: Integrating Molecular Dynamics and Fingerprints for Ligand and Proteins. J. Chem. Inf. Modeling. 2015;55:2256–2274. doi: 10.1021/acs.jcim.5b00169. PubMed DOI

Wieder M., Garon A., Perricone U., Boresch S., Seidel T., Almerico A.M., Langer T. Common Hits Approach: Combining Pharmacophore Modeling and Molecular Dynamics Simulations. J. Chem. Inf. Modeling. 2017;57:365–385. doi: 10.1021/acs.jcim.6b00674. PubMed DOI

Kutlushina A., Khakimova A., Madzhidov T., Polishchuk P. Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. Molecules. 2018;23:3094. doi: 10.3390/molecules23123094. PubMed DOI PMC

Mysinger M.M., Carchia M., Irwin J.J., Shoichet B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 2012;55:6582–6594. doi: 10.1021/jm300687e. PubMed DOI PMC

Landrum G. RDKit: Open-Source Cheminformatics Software. [(accessed on 2 November 2019)]; Available online: https://www.rdkit.org.

Sayle K.L., Bentley J., Boyle F.T., Calvert A.H., Cheng Y., Curtin N.J., Endicott J.A., Golding B.T., Hardcastle I.R., Jewsbury P., et al. Structure-Based design of 2-Arylamino-4-cyclohexylmethyl-5-nitroso-6-aminopyrimidine inhibitors of cyclin-Dependent kinases 1 and 2. Bioorganic Med. Chem. Lett. 2003;13:3079–3082. doi: 10.1016/S0960-894X(03)00651-6. PubMed DOI

Pratt D.J., Bentley J., Jewsbury P., Boyle F.T., Endicott J.A., Noble M.E.M. Dissecting the Determinants of Cyclin-Dependent Kinase 2 and Cyclin-Dependent Kinase 4 Inhibitor Selectivity. J. Med. Chem. 2006;49:5470–5477. doi: 10.1021/jm060216x. PubMed DOI

Coxon C.R., Anscombe E., Harnor S.J., Martin M.P., Carbain B., Golding B.T., Hardcastle I.R., Harlow L.K., Korolchuk S., Matheson C.J., et al. Cyclin-Dependent Kinase (CDK) Inhibitors: Structure–Activity Relationships and Insights into the CDK-2 Selectivity of 6-Substituted 2-Arylaminopurines. J. Med. Chem. 2017;60:1746–1767. doi: 10.1021/acs.jmedchem.6b01254. PubMed DOI PMC

Choong I.C., Serafimova I., Fan J., Stockett D., Chan E., Cheeti S., Lu Y., Fahr B., Pham P., Arkin M.R., et al. A diaminocyclohexyl analog of SNS-032 with improved permeability and bioavailability properties. Bioorganic Med. Chem. Lett. 2008;18:5763–5765. doi: 10.1016/j.bmcl.2008.09.073. PubMed DOI

Fan J., Fahr B., Stockett D., Chan E., Cheeti S., Serafimova I., Lu Y., Pham P., Walker D.H., Hoch U., et al. Modifications of the isonipecotic acid fragment of SNS-032: Analogs with improved permeability and lower efflux ratio. Bioorganic Med. Chem. Lett. 2008;18:6236–6239. doi: 10.1016/j.bmcl.2008.09.099. PubMed DOI

Wang S., Griffiths G., Midgley C.A., Barnett A.L., Cooper M., Grabarek J., Ingram L., Jackson W., Kontopidis G., McClue S.J., et al. Discovery and Characterization of 2-Anilino-4- (Thiazol-5-yl)Pyrimidine Transcriptional CDK Inhibitors as Anticancer Agents. Chem. Biol. 2010;17:1111–1121. doi: 10.1016/j.chembiol.2010.07.016. PubMed DOI

Chu X.-J., DePinto W., Bartkovitz D., So S.-S., Vu B.T., Packman K., Lukacs C., Ding Q., Jiang N., Wang K., et al. Discovery of [4-Amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6- methoxyphenyl)methanone (R547), A Potent and Selective Cyclin-Dependent Kinase Inhibitor with Significant in Vivo Antitumor Activity. J. Med. Chem. 2006;49:6549–6560. doi: 10.1021/jm0606138. PubMed DOI

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Abraham M.J., van der Spoel D., Lindahl E., Hess B., The GROMACS Development Team GROMACS User Manual Version 2016. [(accessed on 18 November 2019)]; Available online: www.gromacs.org.

Ponder J.W., Case D.A. Advances in Protein Chemistry. Volume 66. Academic Press; Cambridge, MA, USA: 2003. Force Fields for Protein Simulations; pp. 27–85. PubMed

Wang J., Wang W., Kollman P.A., Case D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006;25:247–260. doi: 10.1016/j.jmgm.2005.12.005. PubMed DOI

Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Lemkul J. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1. 0] Living J. Comput. Mol. Sci. 2018;1:5068. doi: 10.33011/livecoms.1.1.5068. DOI

McGibbon R.T., Beauchamp K.A., Harrigan M.P., Klein C., Swails J.M., Hernández C.X., Schwantes C.R., Wang L.P., Lane T.J., Pande V.S. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015;109:1528–1532. doi: 10.1016/j.bpj.2015.08.015. PubMed DOI PMC

Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–W447. doi: 10.1093/nar/gkv315. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Probabilistic Approach for Virtual Screening Based on Multiple Pharmacophores

. 2020 Jan 17 ; 25 (2) : . [epub] 20200117

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...