Clone-based haplotyping of Giardia intestinalis assemblage B human isolates
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
15-33369A
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
30488254
DOI
10.1007/s00436-018-6161-7
PII: 10.1007/s00436-018-6161-7
Knihovny.cz E-resources
- Keywords
- Assemblage B, Genetic variability, Giardia intestinalis, Haplotypes, Molecular cloning,
- MeSH
- Feces parasitology MeSH
- Phylogeny MeSH
- Genotype MeSH
- Giardia lamblia classification genetics isolation & purification MeSH
- Giardiasis parasitology MeSH
- Haplotypes MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- DNA, Protozoan genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Protozoan MeSH
The level of genetic variability of Giardia intestinalis clinical isolates is an intensively studied and discussed issue within the scientific community. Our collection of G. intestinalis human isolates includes six in vitro-cultured isolates from assemblage B, with extensive genetic variability. Such variability prevents the precise genotype characterisation by the multi-locus genotyping (MLG) method commonly used for assemblage A. It was speculated that the intra-assemblage variations represent a reciprocal genetic exchange or true mixed infection. Thus, we analysed gene sequences of the molecular clones of the assemblage B isolates, each representing a single DNA molecule (haplotype) to determine whether the polymorphisms are present within individual haplotypes. Our results, which are based on the analysis of three standard genetic markers (bg, gdh, tpi), point to haplotype diversity and show numerous single nucleotide polymorphisms (SNPs) mostly in codon wobble positions. We do not support the recombinatory origin of the detected haplotypes. The point mutations tolerated by mismatch repair are the possible cause for the detected sequence divergence. The precise sub-genotyping of assemblage B will require finding more conservative genes, as the existing ones are hypervariable in most isolates and prevent their molecular and epidemiological characterisation.
See more in PubMed
Appl Environ Microbiol. 2006 Mar;72(3):2212-7 PubMed
Nucleic Acids Res. 2007;35(22):7591-603 PubMed
Int J Parasitol. 2008 Nov;38(13):1523-31 PubMed
PLoS Pathog. 2009 Aug;5(8):e1000560 PubMed
Gene. 2010 Jan 1;449(1-2):1-8 PubMed
J Eukaryot Microbiol. 2009 Nov-Dec;56(6):504-18 PubMed
PLoS Negl Trop Dis. 2009 Dec 01;3(12):e558 PubMed
Int J Parasitol. 2011 Apr;41(5):495-503 PubMed
Clin Microbiol Rev. 2011 Jan;24(1):110-40 PubMed
PLoS Negl Trop Dis. 2011 Aug;5(8):e1262 PubMed
BMC Microbiol. 2011 Sep 20;11:206 PubMed
BMC Microbiol. 2012 May 03;12:65 PubMed
PLoS One. 2012;7(10):e46688 PubMed
Int J Parasitol. 2013 Nov;43(12-13):943-56 PubMed
PLoS Pathog. 2014 Apr 10;10(4):e1003908 PubMed
G3 (Bethesda). 2017 May 5;7(5):1511-1524 PubMed
Infect Genet Evol. 2017 Oct;54:128-137 PubMed
Parasitology. 2018 Oct;145(12):1577-1587 PubMed
Parasitol Int. 2018 Dec;67(6):759-762 PubMed