Disruption of Multiple Distinctive Neural Networks Associated With Impulse Control Disorder in Parkinson's Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30519167
PubMed Central
PMC6258801
DOI
10.3389/fnhum.2018.00462
Knihovny.cz E-zdroje
- Klíčová slova
- Go/No Go task, Parkinson's disease, delay discounting task, fMRI, functional connectivity, impulse control disorder,
- Publikační typ
- časopisecké články MeSH
The phenomenon of impulsivity in Parkinson's disease appears as an arduous side effect of dopaminergic therapy with potentially detrimental consequences for the life of the patients. Although conceptualized as a result of non-physiologic chronic dopaminergic stimulation, recent advances speculate on combined disruption of other networks as well. In the search for neuroanatomical correlates of this multifaceted disturbance, this study employs two distinct, well-defined tasks of close association to motor inhibition and decision-making impulsivity, Go/No Go and Delay discounting. The fMRI and functional connectivity analysis in 21 Parkinson's disease patients, including 8 patients suffering from severe impulse control disorder, and 28 healthy controls, revealed in impulsive Parkinson's disease patients not only decreased fMRI activation in the dorsolateral prefrontal cortex and bilateral striatum, but also vast functional connectivity changes of both caudate nuclei as decreased connectivity to the superior parietal cortex and increased connectivity to the insular area, clearly beyond the commonly stated areas, which indicates that orbitofronto-striatal and mesolimbic functional disruptions are not the sole mechanisms underlying impulse control disorder in Parkinson's disease. Ergo, our results present a refinement and synthesis of gradually developing ideas about the nature of impulsive control disorder in Parkinson's disease-an umbrella term encompassing various behavioral deviations related to distinct neuronal networks and presumably neurotransmitter systems, which greatly exceed the previously envisioned dopaminergic pathways as the only culprit.
Center for Magnetic Resonance Research University of Minnesota Minneapolis MN United States
Department of Neurology School of Medicine University of Minnesota Minneapolis MN United States
Zobrazit více v PubMed
Antonelli F., Ko J. H., Miyasaki J., Lang A. E., Houle S., Valzania F., et al. . (2014). Dopamine-agonists and impulsivity in Parkinson's disease: impulsive choices vs. impulsive actions. Hum. Brain Mapp. 35, 2499–2506. 10.1002/hbm.22344 PubMed DOI PMC
Antonini A., Barone P., Bonuccelli U., Annoni K., Asgharnejad M., Stanzione P. (2017). ICARUS study: prevalence and clinical features of impulse control disorders in Parkinson's disease. J. Neurol. Neurosurg. Psychiatr. 88, 317–324. 10.1136/jnnp-2016-315277 PubMed DOI
Averbeck B. B., Djamshidian A., O'Sullivan S. S., Housden C. R., Roiser J. P., Lees A. J. (2013). Uncertainty about mapping future actions into rewards may underlie performance on multiple measures of impulsivity in behavioral addiction: evidence from Parkinson's disease. Behav. Neurosci. 127:245. 10.1037/a0032079 PubMed DOI PMC
Baarendse P. J. J., Vanderschuren L. J. M. J. (2012). Dissociable effects of monoamine reuptake inhibitors on distinct forms of impulsive behavior in rats. Psychopharmacology 219, 313–326. 10.1007/s00213-011-2576-x PubMed DOI PMC
Bari A., Eagle D. M., Mar A. C., Robinson E. S. J., Robbins T. W. (2009). Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology 205, 273–283. 10.1007/s00213-009-1537-0 PubMed DOI PMC
Biundo R., Weis L., Facchini S., Formento-Dojot P., Vallelunga A., Pilleri M., et al. . (2015). Patterns of cortical thickness associated with impulse control disorders in Parkinson's disease. Mov. Disord. 30, 688–695. 10.1002/mds.26154 PubMed DOI
Braak H., Del Tredici K., Rüb U., De Vos R. A. I., Steur E. N. H. J., Braak E. (2003). Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211. 10.1016/S0197-4580(02)00065-9 PubMed DOI
Buckholtz J. W., Treadway M. T., Cowan R. L., Woodward N. D., Li R., Ansari M. S., et al. . (2010). Dopaminergic network differences in human impulsivity. Science 329:532. 10.1126/science.1185778 PubMed DOI PMC
Carriere N., Lopes R., Defebvre L., Delmaire C., Dujardin K. (2015). Impaired corticostriatal connectivity in impulse control disorders in Parkinson disease. Neurology 84, 2116–2123. 10.1212/WNL.0000000000001619 PubMed DOI
Ceravolo R., Frosini D., Rossi C., Bonuccelli U. (2009). Impulse control disorders in Parkinson's disease: definition, epidemiology, risk factors, neurobiology and management. Parkinsonism Relat. Disord. 15:S111–S5. 10.1016/S1353-8020(09)70847-8 PubMed DOI
Cilia R., Cho S. S., van Eimeren T., Marotta G., Siri C., Ko J. H., et al. . (2011). Pathological gambling in patients with Parkinson's disease is associated with fronto-striatal disconnection: a path modeling analysis. Mov. Disord. 26, 225–233. 10.1002/mds.23480 PubMed DOI
Cooney J. W., Stacy M. (2016). Neuropsychiatric issues in Parkinson's disease. Curr Neurol Neurosci Rep 16, 49. 10.1007/s11910-016-0647-4 PubMed DOI
Djamshidian A., O'Sullivan S. S., Lees A., Averbeck B. B. (2011). Stroop test performance in impulsive and non impulsive patients with Parkinson's disease. Parkinsonism Relat. Disord. 17, 212–214. 10.1016/j.parkreldis.2010.12.014 PubMed DOI PMC
Farrer M. J. (2006). Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet. 7:306. 10.1038/nrg1831 PubMed DOI
Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198. PubMed
Frank M. J., Seeberger L. C., O'Reilly R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943. 10.1126/science.1102941 PubMed DOI
Friston K. J., Buechel C., Fink G. R., Morris J., Rolls E., Dolan R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218–229. 10.1006/nimg.1997.0291 PubMed DOI
Frosini D., Pesaresi I., Cosottini M., Belmonte G., Rossi C., Dell'Osso L., et al. . (2010). Parkinson's disease and pathological gambling: results from a functional MRI study. Mov. Disord. 25, 2449–2453. 10.1002/mds.23369 PubMed DOI
Garcia-Ruiz P. J., Castrillo J. C. M., Alonso-Canovas A., Barcenas A. H., Vela L., Alonso P. S., et al. . (2014). Impulse control disorder in patients with Parkinson's disease under dopamine agonist therapy: a multicentre study. J. Neurol. Neurosurg. Psychiatr. 85, 840–844. 10.1136/jnnp-2013-306787 PubMed DOI
Gescheidt T., Czekóová K., Urbánek T., Mareček R., Mikl M., Kubíková R., et al. . (2012). Iowa Gambling Task in patients with early-onset Parkinson's disease: strategy analysis. Neurol. Sci. 33, 1329–1335. 10.1007/s10072-012-1086-x PubMed DOI
Grant J. E., Suck W. K., Hartman B. K. (2008). A double-blind, placebo-controlled study of the opiate antagonist naltrexone in the treatment of pathological gambling urges. J. Clin. Psychiatry 69, 783–789. 10.4088/JCP.v69n0511 PubMed DOI
Hoehn M. M., Yahr M. D. (1967). Parkinsonism onset, progression, and mortality. Neurology 17:427. 10.1212/WNL.17.5.427 PubMed DOI
Homberg J. R., Pattij T., Janssen M. C. W., Ronken E., De Boer S. F., Schoffelmeer A. N. M., et al. (2007). Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility. Eur. J. Neurosci. 26, 2066–2073. 10.1111/j.1460-9568.2007.05839.x PubMed DOI
Hughes A. J., Daniel S. E., Kilford L., Lees A. (1992). J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–4. 10.1136/jnnp.55.3.181 PubMed DOI PMC
Jahfari S., Waldorp L., van den Wildenberg W. P. M., Scholte H. S., Ridderinkhof K. R., Forstmann B. U. (2011). Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J. Neurosci. 31, 6891–6899. 10.1523/JNEUROSCI.5253-10.2011 PubMed DOI PMC
Joutsa J., Martikainen K., Vahlberg T., Voon V., Kaasinen V. (2012). Impulse control disorders and depression in Finnish patients with Parkinson's disease. Parkinsonism Relat. Disord. 18, 155–160. 10.1016/j.parkreldis.2011.09.007 PubMed DOI
Kehagia A. A., Housden C. R., Regenthal R., Barker R. A., Müller U., Rowe J., et al. . (2014). Targeting impulsivity in Parkinson's disease using atomoxetine. Brain 137, 1986–1997. 10.1093/brain/awu117 PubMed DOI PMC
Levy B. J., Wagner A. D. (2011). Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann. N. Y. Acad. Sci. 1224, 40–62. 10.1111/j.1749-6632.2011.05958.x PubMed DOI PMC
Lewis S. J. G., Foltynie T., Blackwell A. D., Robbins T. W., Owen A. M., Barker R. A. (2005). Heterogeneity of Parkinson's disease in the early clinical stages using a data driven approach. J. Neurol. Neurosurg. Psychiatr. 76, 343–348. 10.1136/jnnp.2003.033530 PubMed DOI PMC
Maldjian J. A., Laurienti P. J., Kraft R. A., Burdette J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19, 1233–1239. 10.1016/S1053-8119(03)00169-1 PubMed DOI
Maloney E. M., Djamshidian A., O'Sullivan S. S. (2017). Phenomenology and epidemiology of impulsive-compulsive behaviours in Parkinson's disease, atypical Parkinsonian disorders and non-Parkinsonian populations. J. Neurol. Sci. 374:47–52. 10.1016/j.jns.2016.12.058 PubMed DOI
Mazur J. E. (1987). An adjusting procedure for studying delayed reinforcement, in Quantitative Analyses of Behavior, Vol. 5. The Effect of Delay and of Intervening Events on Reinforcement Value, Commons M. L., Mazur J. E., Nevin J. A. (Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.), 55–73.
Miedl S. F., Fehr T., Meyer G., Herrmann M. (2010). Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Res. 181, 165–173. 10.1016/j.pscychresns.2009.11.008 PubMed DOI
Monchi O., Petrides M., Mejia-Constain B., Strafella A. P. (2006). Cortical activity in Parkinson's disease during executive processing depends on striatal involvement. Brain 130, 233–244. 10.1093/brain/awl326 PubMed DOI PMC
Montgomery S. A., Asberg M. (1979). A new depression scale designed to be sensitive to change. Br. J. Psychiatry 134, 382–389. 10.1192/bjp.134.4.382 PubMed DOI
Napier T. C., Corvol J. C., Grace A. A., Roitman J. D., Rowe J., Voon V., et al. . (2015). Linking neuroscience with modern concepts of impulse control disorders in Parkinson's disease. Mov. Disord. 30, 141–149. 10.1002/mds.26068 PubMed DOI PMC
Nombela C., Rittman T., Robbins T. W., Rowe J. B. (2014). Multiple modes of impulsivity in Parkinson's disease. PLoS ONE 9:e85747. 10.1371/journal.pone.0085747 PubMed DOI PMC
O'Callaghan C., Bertoux M., Hornberger M. (2014). Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J. Neurol. Neurosurg. Psychiatr. 85, 371–378. 10.1136/jnnp-2012-304558 PubMed DOI
Papay K., Xie S. X., Stern M., Hurtig H., Siderowf A., Duda J. E., et al. . (2014). Naltrexone for impulse control disorders in Parkinson disease A placebo-controlled study. Neurology 83, 826–833. 10.1212/WNL.0000000000000729 PubMed DOI PMC
Patton J. H., Stanford M. S., Barratt E. S. (1995). Factor structure of the Barratt impulsiveness scale. J. Clin. Psychol. 51, 768–74. 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1 PubMed DOI
Perez-Lloret S., Rey M. V., Fabre N., Ory F., Spampinato U., Brefel-Courbon C., et al. . (2012). Prevalence and pharmacological factors associated with impulse-control disorder symptoms in patients with Parkinson disease. Clin. Neuropharmacol. 35, 261–265. 10.1097/WNF.0b013e31826e6e6d PubMed DOI
Piquet-Pessôa M., Fontenelle L. F. (2016). Opioid antagonists in broadly defined behavioral addictions: a narrative review. Expert Opin. Pharmacother. 17, 835–844. 10.1517/14656566.2016.1145660 PubMed DOI
Politis M., Loane C., Wu K., O'Sullivan S. S., Woodhead Z., Kiferle L., et al. . (2013). Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson's disease. Brain 136, 400–411. 10.1093/brain/aws326 PubMed DOI
Prieto G. A., Perez-Burgos A., Palomero-Rivero M., Galarraga E., Drucker-Colin R., Bargas J. (2011). Upregulation of D2-class signaling in dopamine-denervated striatum is in part mediated by D3 receptors acting on CaV2. 1 channels via PIP2 depletion. J. Neurophysiol. 105, 2260–74. 10.1152/jn.00516.2010 PubMed DOI
Rae C. L., Correia M. M., Altena E., Hughes L. E., Barker R. A., Rowe J. B. (2012). White matter pathology in Parkinson's disease: the effect of imaging protocol differences and relevance to executive function. Neuroimage 62, 1675–1684. 10.1016/j.neuroimage.2012.06.012 PubMed DOI PMC
Rao H., Mamikonyan E., Detre J. A., Siderowf A. D., Stern M. B., Potenza M. N., et al. . (2010). Decreased ventral striatal activity with impulse control disorders in Parkinson's disease. Mov. Disord. 25, 1660–1669. 10.1002/mds.23147 PubMed DOI PMC
Ray N. J., Miyasaki J. M., Zurowski M., Ko J. H., Cho S. S., Pellecchia G., et al. (2012). Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson's patients with medication-induced pathological gambling: a [11C] FLB-457 and PET study. Neurobiol. Dis. 48, 519–525. 10.1016/j.nbd.2012.06.021 PubMed DOI PMC
Robinson T. E., Berridge K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291. 10.1016/0165-0173(93)90013-P PubMed DOI
Santangelo G., Barone P., Trojano L., Vitale C. (2013). Pathological gambling in Parkinson's disease. A comprehensive review. Parkinsonism Relat. Disord. 19, 645–653. 10.1016/j.parkreldis.2013.02.007 PubMed DOI
Schuirmann D. J. (1987). A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biopharm. 15, 657–680. 10.1007/BF01068419 PubMed DOI
Sebastian A., Pohl M. F., Klöppel S., Feige B., Lange T., Stahl C., et al. . (2013). Disentangling common and specific neural subprocesses of response inhibition. Neuroimage 64:601–615. 10.1016/j.neuroimage.2012.09.020 PubMed DOI
Simmonds D. J., Pekar J. J., Mostofsky S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46, 224–232. 10.1016/j.neuropsychologia.2007.07.015 PubMed DOI PMC
Steeves T. D. L., Miyasaki J., Zurowski M., Lang A. E., Pellecchia G., Van Eimeren T., et al. (2009). Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 132, 1376–1385. 10.1093/brain/awp054 PubMed DOI PMC
Tomlinson C. L., Stowe R., Patel S., Rick C., Gray R., Clarke C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Mov. Disord. 25, 2649–2653. 10.1002/mds.23429 PubMed DOI
Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., et al. . (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289. 10.1006/nimg.2001.0978 PubMed DOI
Uddin L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16:55. 10.1038/nrn3857 PubMed DOI
van Balkom T. D., Vriend C., Berendse H. W., Foncke E. M. J., van der Werf Y. D., van den Heuvel O. A., et al. . (2016). Profiling cognitive and neuropsychiatric heterogeneity in Parkinson's disease. Parkinsonism Relat. Disord. 28:130–136. 10.1016/j.parkreldis.2016.05.014 PubMed DOI
Voon V., Gao J., Brezing C., Symmonds M., Ekanayake V., Fernandez H., et al. . (2011a). Dopamine agonists and risk: impulse control disorders in Parkinson's; disease. Brain 134, 1438–1446. 10.1093/brain/awr080 PubMed DOI PMC
Voon V., Mehta A. R., Hallett M. (2011b). Impulse control disorders in Parkinson's disease: recent advances. Curr. Opin. Neurol. 24:324. 10.1097/WCO.0b013e3283489687 PubMed DOI PMC
Voon V., Pessiglione M., Brezing C., Gallea C., Fernandez H. H., Dolan R. J., et al. . (2010). Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. Neuron 65, 135–142. 10.1016/j.neuron.2009.12.027 PubMed DOI PMC
Vriend C. (2018). The neurobiology of impulse control disorders in Parkinson's disease: from neurotransmitters to neural networks. Cell Tissue Res. 373, 327–336. 10.1007/s00441-017-2771-0 PubMed DOI PMC
Vriend C., Nordbeck A. H., Booij J., van der Werf Y. D., Pattij T., Voorn P., et al. . (2014). Reduced dopamine transporter binding predates impulse control disorders in Parkinson's disease. Mov. Disord. 29, 904–911. 10.1002/mds.25886 PubMed DOI
Weintraub D., David A. S., Evans A. H., Grant J. E., Stacy M. (2015). Clinical spectrum of impulse control disorders in Parkinson's disease. Mov Disord. 30, 121–127. 10.1002/mds.26016 PubMed DOI
Weintraub D., Papay K., Siderowf A., Parkinson's Progression Markers I. (2013). Screening for impulse control symptoms in patients with de novo Parkinson disease A case-control study. Neurology 80, 176–180. 10.1212/WNL.0b013e31827b915c PubMed DOI PMC
Ye Z., Altena E., Nombela C., Housden C. R., Maxwell H., Rittman T., et al. . (2014). Selective serotonin reuptake inhibition modulates response inhibition in Parkinson's disease. Brain 137, 1145–1155. 10.1093/brain/awu032 PubMed DOI PMC