Disruption of Multiple Distinctive Neural Networks Associated With Impulse Control Disorder in Parkinson's Disease

. 2018 ; 12 () : 462. [epub] 20181121

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30519167

The phenomenon of impulsivity in Parkinson's disease appears as an arduous side effect of dopaminergic therapy with potentially detrimental consequences for the life of the patients. Although conceptualized as a result of non-physiologic chronic dopaminergic stimulation, recent advances speculate on combined disruption of other networks as well. In the search for neuroanatomical correlates of this multifaceted disturbance, this study employs two distinct, well-defined tasks of close association to motor inhibition and decision-making impulsivity, Go/No Go and Delay discounting. The fMRI and functional connectivity analysis in 21 Parkinson's disease patients, including 8 patients suffering from severe impulse control disorder, and 28 healthy controls, revealed in impulsive Parkinson's disease patients not only decreased fMRI activation in the dorsolateral prefrontal cortex and bilateral striatum, but also vast functional connectivity changes of both caudate nuclei as decreased connectivity to the superior parietal cortex and increased connectivity to the insular area, clearly beyond the commonly stated areas, which indicates that orbitofronto-striatal and mesolimbic functional disruptions are not the sole mechanisms underlying impulse control disorder in Parkinson's disease. Ergo, our results present a refinement and synthesis of gradually developing ideas about the nature of impulsive control disorder in Parkinson's disease-an umbrella term encompassing various behavioral deviations related to distinct neuronal networks and presumably neurotransmitter systems, which greatly exceed the previously envisioned dopaminergic pathways as the only culprit.

Zobrazit více v PubMed

Antonelli F., Ko J. H., Miyasaki J., Lang A. E., Houle S., Valzania F., et al. . (2014). Dopamine-agonists and impulsivity in Parkinson's disease: impulsive choices vs. impulsive actions. Hum. Brain Mapp. 35, 2499–2506. 10.1002/hbm.22344 PubMed DOI PMC

Antonini A., Barone P., Bonuccelli U., Annoni K., Asgharnejad M., Stanzione P. (2017). ICARUS study: prevalence and clinical features of impulse control disorders in Parkinson's disease. J. Neurol. Neurosurg. Psychiatr. 88, 317–324. 10.1136/jnnp-2016-315277 PubMed DOI

Averbeck B. B., Djamshidian A., O'Sullivan S. S., Housden C. R., Roiser J. P., Lees A. J. (2013). Uncertainty about mapping future actions into rewards may underlie performance on multiple measures of impulsivity in behavioral addiction: evidence from Parkinson's disease. Behav. Neurosci. 127:245. 10.1037/a0032079 PubMed DOI PMC

Baarendse P. J. J., Vanderschuren L. J. M. J. (2012). Dissociable effects of monoamine reuptake inhibitors on distinct forms of impulsive behavior in rats. Psychopharmacology 219, 313–326. 10.1007/s00213-011-2576-x PubMed DOI PMC

Bari A., Eagle D. M., Mar A. C., Robinson E. S. J., Robbins T. W. (2009). Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology 205, 273–283. 10.1007/s00213-009-1537-0 PubMed DOI PMC

Biundo R., Weis L., Facchini S., Formento-Dojot P., Vallelunga A., Pilleri M., et al. . (2015). Patterns of cortical thickness associated with impulse control disorders in Parkinson's disease. Mov. Disord. 30, 688–695. 10.1002/mds.26154 PubMed DOI

Braak H., Del Tredici K., Rüb U., De Vos R. A. I., Steur E. N. H. J., Braak E. (2003). Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211. 10.1016/S0197-4580(02)00065-9 PubMed DOI

Buckholtz J. W., Treadway M. T., Cowan R. L., Woodward N. D., Li R., Ansari M. S., et al. . (2010). Dopaminergic network differences in human impulsivity. Science 329:532. 10.1126/science.1185778 PubMed DOI PMC

Carriere N., Lopes R., Defebvre L., Delmaire C., Dujardin K. (2015). Impaired corticostriatal connectivity in impulse control disorders in Parkinson disease. Neurology 84, 2116–2123. 10.1212/WNL.0000000000001619 PubMed DOI

Ceravolo R., Frosini D., Rossi C., Bonuccelli U. (2009). Impulse control disorders in Parkinson's disease: definition, epidemiology, risk factors, neurobiology and management. Parkinsonism Relat. Disord. 15:S111–S5. 10.1016/S1353-8020(09)70847-8 PubMed DOI

Cilia R., Cho S. S., van Eimeren T., Marotta G., Siri C., Ko J. H., et al. . (2011). Pathological gambling in patients with Parkinson's disease is associated with fronto-striatal disconnection: a path modeling analysis. Mov. Disord. 26, 225–233. 10.1002/mds.23480 PubMed DOI

Cooney J. W., Stacy M. (2016). Neuropsychiatric issues in Parkinson's disease. Curr Neurol Neurosci Rep 16, 49. 10.1007/s11910-016-0647-4 PubMed DOI

Djamshidian A., O'Sullivan S. S., Lees A., Averbeck B. B. (2011). Stroop test performance in impulsive and non impulsive patients with Parkinson's disease. Parkinsonism Relat. Disord. 17, 212–214. 10.1016/j.parkreldis.2010.12.014 PubMed DOI PMC

Farrer M. J. (2006). Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet. 7:306. 10.1038/nrg1831 PubMed DOI

Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198. PubMed

Frank M. J., Seeberger L. C., O'Reilly R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306, 1940–1943. 10.1126/science.1102941 PubMed DOI

Friston K. J., Buechel C., Fink G. R., Morris J., Rolls E., Dolan R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218–229. 10.1006/nimg.1997.0291 PubMed DOI

Frosini D., Pesaresi I., Cosottini M., Belmonte G., Rossi C., Dell'Osso L., et al. . (2010). Parkinson's disease and pathological gambling: results from a functional MRI study. Mov. Disord. 25, 2449–2453. 10.1002/mds.23369 PubMed DOI

Garcia-Ruiz P. J., Castrillo J. C. M., Alonso-Canovas A., Barcenas A. H., Vela L., Alonso P. S., et al. . (2014). Impulse control disorder in patients with Parkinson's disease under dopamine agonist therapy: a multicentre study. J. Neurol. Neurosurg. Psychiatr. 85, 840–844. 10.1136/jnnp-2013-306787 PubMed DOI

Gescheidt T., Czekóová K., Urbánek T., Mareček R., Mikl M., Kubíková R., et al. . (2012). Iowa Gambling Task in patients with early-onset Parkinson's disease: strategy analysis. Neurol. Sci. 33, 1329–1335. 10.1007/s10072-012-1086-x PubMed DOI

Grant J. E., Suck W. K., Hartman B. K. (2008). A double-blind, placebo-controlled study of the opiate antagonist naltrexone in the treatment of pathological gambling urges. J. Clin. Psychiatry 69, 783–789. 10.4088/JCP.v69n0511 PubMed DOI

Hoehn M. M., Yahr M. D. (1967). Parkinsonism onset, progression, and mortality. Neurology 17:427. 10.1212/WNL.17.5.427 PubMed DOI

Homberg J. R., Pattij T., Janssen M. C. W., Ronken E., De Boer S. F., Schoffelmeer A. N. M., et al. (2007). Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility. Eur. J. Neurosci. 26, 2066–2073. 10.1111/j.1460-9568.2007.05839.x PubMed DOI

Hughes A. J., Daniel S. E., Kilford L., Lees A. (1992). J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–4. 10.1136/jnnp.55.3.181 PubMed DOI PMC

Jahfari S., Waldorp L., van den Wildenberg W. P. M., Scholte H. S., Ridderinkhof K. R., Forstmann B. U. (2011). Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J. Neurosci. 31, 6891–6899. 10.1523/JNEUROSCI.5253-10.2011 PubMed DOI PMC

Joutsa J., Martikainen K., Vahlberg T., Voon V., Kaasinen V. (2012). Impulse control disorders and depression in Finnish patients with Parkinson's disease. Parkinsonism Relat. Disord. 18, 155–160. 10.1016/j.parkreldis.2011.09.007 PubMed DOI

Kehagia A. A., Housden C. R., Regenthal R., Barker R. A., Müller U., Rowe J., et al. . (2014). Targeting impulsivity in Parkinson's disease using atomoxetine. Brain 137, 1986–1997. 10.1093/brain/awu117 PubMed DOI PMC

Levy B. J., Wagner A. D. (2011). Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann. N. Y. Acad. Sci. 1224, 40–62. 10.1111/j.1749-6632.2011.05958.x PubMed DOI PMC

Lewis S. J. G., Foltynie T., Blackwell A. D., Robbins T. W., Owen A. M., Barker R. A. (2005). Heterogeneity of Parkinson's disease in the early clinical stages using a data driven approach. J. Neurol. Neurosurg. Psychiatr. 76, 343–348. 10.1136/jnnp.2003.033530 PubMed DOI PMC

Maldjian J. A., Laurienti P. J., Kraft R. A., Burdette J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19, 1233–1239. 10.1016/S1053-8119(03)00169-1 PubMed DOI

Maloney E. M., Djamshidian A., O'Sullivan S. S. (2017). Phenomenology and epidemiology of impulsive-compulsive behaviours in Parkinson's disease, atypical Parkinsonian disorders and non-Parkinsonian populations. J. Neurol. Sci. 374:47–52. 10.1016/j.jns.2016.12.058 PubMed DOI

Mazur J. E. (1987). An adjusting procedure for studying delayed reinforcement, in Quantitative Analyses of Behavior, Vol. 5. The Effect of Delay and of Intervening Events on Reinforcement Value, Commons M. L., Mazur J. E., Nevin J. A. (Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.), 55–73.

Miedl S. F., Fehr T., Meyer G., Herrmann M. (2010). Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Res. 181, 165–173. 10.1016/j.pscychresns.2009.11.008 PubMed DOI

Monchi O., Petrides M., Mejia-Constain B., Strafella A. P. (2006). Cortical activity in Parkinson's disease during executive processing depends on striatal involvement. Brain 130, 233–244. 10.1093/brain/awl326 PubMed DOI PMC

Montgomery S. A., Asberg M. (1979). A new depression scale designed to be sensitive to change. Br. J. Psychiatry 134, 382–389. 10.1192/bjp.134.4.382 PubMed DOI

Napier T. C., Corvol J. C., Grace A. A., Roitman J. D., Rowe J., Voon V., et al. . (2015). Linking neuroscience with modern concepts of impulse control disorders in Parkinson's disease. Mov. Disord. 30, 141–149. 10.1002/mds.26068 PubMed DOI PMC

Nombela C., Rittman T., Robbins T. W., Rowe J. B. (2014). Multiple modes of impulsivity in Parkinson's disease. PLoS ONE 9:e85747. 10.1371/journal.pone.0085747 PubMed DOI PMC

O'Callaghan C., Bertoux M., Hornberger M. (2014). Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J. Neurol. Neurosurg. Psychiatr. 85, 371–378. 10.1136/jnnp-2012-304558 PubMed DOI

Papay K., Xie S. X., Stern M., Hurtig H., Siderowf A., Duda J. E., et al. . (2014). Naltrexone for impulse control disorders in Parkinson disease A placebo-controlled study. Neurology 83, 826–833. 10.1212/WNL.0000000000000729 PubMed DOI PMC

Patton J. H., Stanford M. S., Barratt E. S. (1995). Factor structure of the Barratt impulsiveness scale. J. Clin. Psychol. 51, 768–74. 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1 PubMed DOI

Perez-Lloret S., Rey M. V., Fabre N., Ory F., Spampinato U., Brefel-Courbon C., et al. . (2012). Prevalence and pharmacological factors associated with impulse-control disorder symptoms in patients with Parkinson disease. Clin. Neuropharmacol. 35, 261–265. 10.1097/WNF.0b013e31826e6e6d PubMed DOI

Piquet-Pessôa M., Fontenelle L. F. (2016). Opioid antagonists in broadly defined behavioral addictions: a narrative review. Expert Opin. Pharmacother. 17, 835–844. 10.1517/14656566.2016.1145660 PubMed DOI

Politis M., Loane C., Wu K., O'Sullivan S. S., Woodhead Z., Kiferle L., et al. . (2013). Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson's disease. Brain 136, 400–411. 10.1093/brain/aws326 PubMed DOI

Prieto G. A., Perez-Burgos A., Palomero-Rivero M., Galarraga E., Drucker-Colin R., Bargas J. (2011). Upregulation of D2-class signaling in dopamine-denervated striatum is in part mediated by D3 receptors acting on CaV2. 1 channels via PIP2 depletion. J. Neurophysiol. 105, 2260–74. 10.1152/jn.00516.2010 PubMed DOI

Rae C. L., Correia M. M., Altena E., Hughes L. E., Barker R. A., Rowe J. B. (2012). White matter pathology in Parkinson's disease: the effect of imaging protocol differences and relevance to executive function. Neuroimage 62, 1675–1684. 10.1016/j.neuroimage.2012.06.012 PubMed DOI PMC

Rao H., Mamikonyan E., Detre J. A., Siderowf A. D., Stern M. B., Potenza M. N., et al. . (2010). Decreased ventral striatal activity with impulse control disorders in Parkinson's disease. Mov. Disord. 25, 1660–1669. 10.1002/mds.23147 PubMed DOI PMC

Ray N. J., Miyasaki J. M., Zurowski M., Ko J. H., Cho S. S., Pellecchia G., et al. (2012). Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson's patients with medication-induced pathological gambling: a [11C] FLB-457 and PET study. Neurobiol. Dis. 48, 519–525. 10.1016/j.nbd.2012.06.021 PubMed DOI PMC

Robinson T. E., Berridge K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291. 10.1016/0165-0173(93)90013-P PubMed DOI

Santangelo G., Barone P., Trojano L., Vitale C. (2013). Pathological gambling in Parkinson's disease. A comprehensive review. Parkinsonism Relat. Disord. 19, 645–653. 10.1016/j.parkreldis.2013.02.007 PubMed DOI

Schuirmann D. J. (1987). A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biopharm. 15, 657–680. 10.1007/BF01068419 PubMed DOI

Sebastian A., Pohl M. F., Klöppel S., Feige B., Lange T., Stahl C., et al. . (2013). Disentangling common and specific neural subprocesses of response inhibition. Neuroimage 64:601–615. 10.1016/j.neuroimage.2012.09.020 PubMed DOI

Simmonds D. J., Pekar J. J., Mostofsky S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46, 224–232. 10.1016/j.neuropsychologia.2007.07.015 PubMed DOI PMC

Steeves T. D. L., Miyasaki J., Zurowski M., Lang A. E., Pellecchia G., Van Eimeren T., et al. (2009). Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 132, 1376–1385. 10.1093/brain/awp054 PubMed DOI PMC

Tomlinson C. L., Stowe R., Patel S., Rick C., Gray R., Clarke C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Mov. Disord. 25, 2649–2653. 10.1002/mds.23429 PubMed DOI

Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., et al. . (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289. 10.1006/nimg.2001.0978 PubMed DOI

Uddin L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16:55. 10.1038/nrn3857 PubMed DOI

van Balkom T. D., Vriend C., Berendse H. W., Foncke E. M. J., van der Werf Y. D., van den Heuvel O. A., et al. . (2016). Profiling cognitive and neuropsychiatric heterogeneity in Parkinson's disease. Parkinsonism Relat. Disord. 28:130–136. 10.1016/j.parkreldis.2016.05.014 PubMed DOI

Voon V., Gao J., Brezing C., Symmonds M., Ekanayake V., Fernandez H., et al. . (2011a). Dopamine agonists and risk: impulse control disorders in Parkinson's; disease. Brain 134, 1438–1446. 10.1093/brain/awr080 PubMed DOI PMC

Voon V., Mehta A. R., Hallett M. (2011b). Impulse control disorders in Parkinson's disease: recent advances. Curr. Opin. Neurol. 24:324. 10.1097/WCO.0b013e3283489687 PubMed DOI PMC

Voon V., Pessiglione M., Brezing C., Gallea C., Fernandez H. H., Dolan R. J., et al. . (2010). Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. Neuron 65, 135–142. 10.1016/j.neuron.2009.12.027 PubMed DOI PMC

Vriend C. (2018). The neurobiology of impulse control disorders in Parkinson's disease: from neurotransmitters to neural networks. Cell Tissue Res. 373, 327–336. 10.1007/s00441-017-2771-0 PubMed DOI PMC

Vriend C., Nordbeck A. H., Booij J., van der Werf Y. D., Pattij T., Voorn P., et al. . (2014). Reduced dopamine transporter binding predates impulse control disorders in Parkinson's disease. Mov. Disord. 29, 904–911. 10.1002/mds.25886 PubMed DOI

Weintraub D., David A. S., Evans A. H., Grant J. E., Stacy M. (2015). Clinical spectrum of impulse control disorders in Parkinson's disease. Mov Disord. 30, 121–127. 10.1002/mds.26016 PubMed DOI

Weintraub D., Papay K., Siderowf A., Parkinson's Progression Markers I. (2013). Screening for impulse control symptoms in patients with de novo Parkinson disease A case-control study. Neurology 80, 176–180. 10.1212/WNL.0b013e31827b915c PubMed DOI PMC

Ye Z., Altena E., Nombela C., Housden C. R., Maxwell H., Rittman T., et al. . (2014). Selective serotonin reuptake inhibition modulates response inhibition in Parkinson's disease. Brain 137, 1145–1155. 10.1093/brain/awu032 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Behavioral and Neuroanatomical Account of Impulsivity in Parkinson's Disease

. 2019 ; 10 () : 1338. [epub] 20200110

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...