Determination of Milk Products in Ceramic Vessels of Corded Ware Culture from a Late Eneolithic Burial

. 2018 Dec 07 ; 23 (12) : . [epub] 20181207

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30544625

Grantová podpora
17-17346S Grantová Agentura České Republiky
IGA_PrF_2018_027 Univerzita Palackého v Olomouci

In this study, a soil from two ceramic vessels belonging to Corded Ware culture, 2707⁻2571 B.C., found in a cremation grave discovered in Central Moravia, Czech Republic, was analyzed using matrix-assisted laser desorption/ionization⁻mass spectrometry (MALDI⁻MS) combined with advanced statistical treatment (principal component analysis, PCA, and orthogonal projection to latent structures discriminant analysis, OPLS-DA) and by enzyme-linked immunosorbent assay (ELISA). MALDI⁻MS revealed the presence of triacylglycerols in both vessels. This analytical technique was used for the analysis of the soil content from archaeological ceramic vessels for the first time. Targeted ELISA experiments consequently proved the presence of milk proteins in both ceramic vessels. These results represent the first direct evidence of the use of milk or dairy products in the Eneolithic period in Moravian Corded Ware Culture and help to better understand the diet habits and living conditions of Eneolithic populations in Central Europe.

Zobrazit více v PubMed

Stloukal M. Problematika antropologického rozboru žárových pohřbů. (Výzkum pohřebiště v Moravičanech) Archeol. Rozhledy. 1968;20:330–347.

Schmidt C.W., Symes S.A. The Analysis of Burned Human Remains First. Academic Press; Cambridge, UK: 2008.

Parker Pearson M. The Archaeology of Death and Burial. The History Press; Stroud, UK: 2010.

Gonçalves D., Cunha E., Thompson T.J.U. Weight References for Burned Human Skeletal Remins from Portuguese Samples. J. For. Sci. 2013;5:1135–1140. PubMed

Gregg M.W., Slater G.F. A New Method for Extraction, Isolation and Transesterification of Free Fatty Acids from Archaeological Pottery. Archaeometry. 2010;52:833–854. doi: 10.1111/j.1475-4754.2010.00518.x. DOI

Evershed R.P., Arnot K.I., Collister J., Eglinton G., Charters S. Application of Isotope Ratio Monitoring Gas-Chromatography Mass-Spectrometry to the Analysis of Organic Residues of Archaeological Origin. Analyst. 1994;119:909–914. doi: 10.1039/AN9941900909. DOI

Buckley M., Melton N.D., Montgomery J. Proteomics analysis of ancient food vessel stitching reveals>4000-year-old milk protein. Rapid Commun. Mass Spectrom. 2013;27:531–538. doi: 10.1002/rcm.6481. PubMed DOI

Copley M.S., Berstan R., Dudd S.N., Docherty G., Mukherjee A.J., Straker V., Payne S., Evershed R.P. Direct chemical evidence for widespread dairying in prehistoric Britain. Proc. Natl. Acad. Sci. USA. 2003;100:1524–1529. doi: 10.1073/pnas.0335955100. PubMed DOI PMC

Craig O.E., Mulville J., Pearson M.P., Sokol R., Gelsthorpe K., Stacey R., Collins M. Archaeology: Detecting milk proteins in ancient pots. Nature. 2000;408:312. doi: 10.1038/35042684. PubMed DOI

Craig O.E., Allen R.B., Thompson A., Stevens R.E., Steele V.J., Heron C. Distinguishing wild ruminant lipids by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 2012;26:2359–2364. doi: 10.1002/rcm.6349. PubMed DOI

Evershed R.P., Payne S., Sherratt A.G., Copley M.S., Coolidge J., Urem-Kotsu D., Kotsakis K., Özdoğan M., Özdoğan A.E., Nieuwenhuyse O., Akkermans P.M. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature. 2008;455:528–531. doi: 10.1038/nature07180. PubMed DOI

Sauter F., Puchinger L., Schoop U.D. Studies in organic archaeometry VI—Fat analysis sheds light on everyday life in prehistoric Anatolia: Traces of lipids identified in chalcolithic potsherds excavated near Bogazkale, Central Turkey. Arkivoc. 2003;15:15–21.

Oudemans T.F.M., Eijkel G.B., Boon J.J. Identifying biomolecular origins of solid organic residues preserved in Iron Age Pottery using DTMS and MVA. J. Archaeol. Sci. 2007;34:173–193. doi: 10.1016/j.jas.2006.04.007. DOI

Isaksson S., Hallgren F. Lipid residue analyses of Early Neolithic funnel-beaker pottery from Skogsmossen, eastern Central Sweden, and the earliest evidence of dairying in Sweden. J. Archaeol. Sci. 2012;39:3600–3609. doi: 10.1016/j.jas.2012.06.018. DOI

Salque M., Bogucki P.I., Pyzel J., Sobkowiak-Tabaka I., Grygiel R., Szmyt M., Evershed R.P. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature. 2013;493:522–525. doi: 10.1038/nature11698. PubMed DOI

Soberl L., Gasparic A.Z., Budja M., Evershed R.P. Early herding practices revealed through organic residue analysis of pottery from the early Neolithic rock shelter of Mala Triglavca, Slovenia. Doc. Praehist. 2008;35:253–260. doi: 10.4312/dp.35.19. DOI

Mirabaud S., Rolando C., Regert M. Molecular criteria for discriminating adipose fat and milk from different species by NanoESl MS and MS/MS of their triacylglycerols: Application to archaeological remains. Anal. Chem. 2007;79:6182–6192. doi: 10.1021/ac070594p. PubMed DOI

Spangenberg J.E., Jacomet S., Schibler J. Chemical analyses of organic residues in archaeological pottery from Arbon Bleiche 3, Switzerland—Evidence for dairying in the late Neolithic. J. Archaeol. Sci. 2006;33:1–13. doi: 10.1016/j.jas.2005.05.013. DOI

Copley M.S., Berstan R., Dudd S.N., Aillaud S., Mukherjee A.J., Straker V., Payne S., Evershed R.P. Processing of milk products in pottery vessels through British prehistory. Antiquity. 2005;79:895–908. doi: 10.1017/S0003598X00115029. DOI

Copley M.S., Berstan R., Mukherjee A.J., Dudd S.N., Straker V., Payne S., Evershed R.P. Dairying in antiquity. III. Evidence from absorbed lipid residues dating to the British Neolithic. J. Archaeol. Sci. 2005;32:523–546. doi: 10.1016/j.jas.2004.08.006. DOI

Agozzino P., Avellone G., Donato I.D., Filizzola F. Mass spectrometry for cultural heritage knowledge: Gas chromatographic mass spectrometric analysis of organic remains in Neolithic potsherds. J. Mass Spectrom. 2001;36:443–444. doi: 10.1002/jms.128. PubMed DOI

Salque M., Radi G., Tagliacozzo A., Uria B.P., Wolfram S., Hohle I., Stauble H., Whittle A., Hofmann D., Pechtl J., et al. New insights into the Early Neolithic economy and management of animals in Southern and Central Europe revealed using lipid residue analyses of pottery vessels. Anthropozoologica. 2012;47:45–61. doi: 10.5252/az2012n2a4. DOI

Dallongeville S., Garnier N., Rolando C., Tokarski C. Proteins in Art, Archaeology, and Paleontology: From Detection to Identification. Chem. Rev. 2016;116:2–79. doi: 10.1021/acs.chemrev.5b00037. PubMed DOI

Calvano CD, van der Werf I.D., Palmisano F., Sabbatini L. Revealing the composition of organic materials in polychrome works of art: The role of mass spectrometry-based techniques. Anal. Bioanal. Chem. 2016;408:6957–6981. doi: 10.1007/s00216-016-9862-8. PubMed DOI

Hong C., Jiang H., Lü E., Wu Y., Guo L., Xie Y., Wang C., Yang Y. Identification of Milk Component in Ancient Food Residue by Proteomics. PLoS ONE. 2012;7:1–7. doi: 10.1371/journal.pone.0037053. PubMed DOI PMC

Fremout W., Kuckova S., Crhova M., Sanyova J., Saverwyns S., Hynek R., Kodicek M., Vandenabeele P., Moens L. Classification of protein binders in artist’s paints bymatrix-assisted laser desorption/ionisation time-of-flight mass spectrometry: An evaluation of principal component analysis (PCA) and soft independent modelling of class analogy (SIMCA) Rapid Commun. Mass Spectrom. 2011;25:1631–1640. PubMed

Calvano CD., van der Werf I.D., Palmisano F., Sabbatini L. Identification of lipid-and protein-based binders in paintings by direct on-plate wet chemistry and matrix-assisted laser desorption ionization mass spectrometry. Anal. Bioanal. Chem. 2015;407:1015–1022. doi: 10.1007/s00216-014-8359-6. PubMed DOI

Chambery A., Maro A.D., Sanges C., Severino V., Tarantino M., Lamberti A., Parente A., Arcari P. Improved procedure for protein binder analysis in mural painting by LC-ESI/Q-q-TOF mass spectrometry: Detection of different milk species by casein proteotypic peptides. Anal. Bioanal. Chem. 2009;395:2281–2291. doi: 10.1007/s00216-009-3183-0. PubMed DOI

Kuckova S., Crhova M., Vankova L., Hnizda A., Hynek R., Kodicek M. Towards proteomic analysis of milk proteins in historical building materials. Int. J. Mass Spectrom. 2009;284:42–46. doi: 10.1016/j.ijms.2009.01.011. DOI

Fremout W., Dhaenens M., Saverwyns S., Sanyova J., Vandenabeele P., Deforce D., Moens L. Tryptic peptide analysis of protein binders in works of art by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta. 2010;658:156–162. doi: 10.1016/j.aca.2009.11.010. PubMed DOI

Child A.M., Pollard A.M. A review of the applications of immunochemistry to archaeological bone. J. Archaeol. Sci. 1992;19:39–47. doi: 10.1016/0305-4403(92)90005-N. DOI

Collins M.J., Nielson-Marsh C.M., Hiller J., Smith C.I., Roberts J.P., Prigodich R.V., Weiss T.J., Csapό J., Millard A.R., Turner-Walker G. The survival of organic matter in bone. Archaeometry. 2002;44:383–394. doi: 10.1111/1475-4754.t01-1-00071. DOI

Dongoske E.K., Martin L.D., Ferguson J.T. Critique of the Claim of Cannibalism at Cowboy Wash. Am. Antiquity. 2000;65:179–190. doi: 10.2307/2694813. PubMed DOI

Brandt E., Wiechmann I., Grupe G. How reliable are immunological tools for the detection of ancient proteins in fossil bones? Int. J. Osteoarchaeol. 2002;12:307–316. doi: 10.1002/oa.624. DOI

Pavelka J., Kovačiková L., Šmejda L. The determination of domesticated animal species from a Neolithic sample using the ELISA test. C. R. Palevol. 2011;10:61–70. doi: 10.1016/j.crpv.2010.10.012. DOI

Björklund E., Pallaroni L., Von Holst C., Unglaub W. Method of determination of appropriate heat treatment of animal meal by immunoassay developed for detection of cooked beef: Interlaboratory study. J. AOAC Int. 2001;84:1835–1839. PubMed

Pavelka J., Šmejda L., Hynek R., Kučková Š.H. Immunological detection of denatured proteins as a method for rapid identification of food residues on archaeological pottery. J. Archaeol. Sci. 2016;73:25–35. doi: 10.1016/j.jas.2016.07.004. DOI

Burger J., Kirchner M., Bramanti B., Haak W., Thomas M.G. Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proc. Natl. Acad. Sci. 2007;104:3736–3741. doi: 10.1073/pnas.0607187104. PubMed DOI PMC

Gamba C., Jones E.R., Teasdale M.D., McLaughlin R.L., Gonzalez-Fortes G., Mattiangeli V., Domboróczki L., Kővári I., Pap I., Anders A., et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 2014;5:1–9. doi: 10.1038/ncomms6257. PubMed DOI PMC

Witas H.W., Płoszaj T., Jędrychowska-Dańska K., Witas P.J., Masłowska A., Jerszyńska B., Kozłowski T., Osipowicz G. Hunting for the LCT-13910*T Allele between the Middle Neolithic and the Middle Ages Suggests Its Absence in Dairying LBK People Entering the Kuyavia Region in the 8th Millennium BP. PLoS ONE. 2015;10:e0122384. doi: 10.1371/journal.pone.0122384. PubMed DOI PMC

Itan Y., Powell A., Beaumont M.A., Burger J., Thomas M.G. The Origins of Lactase Persistence in Europe. PLoS Comput. Biol. 2009;5:e1000491. doi: 10.1371/journal.pcbi.1000491. PubMed DOI PMC

Malmström H., Linderholm A., Lidén K., Storå J., Molnar P., Holmlund G., Jakobsson M., Götherström A. High frequency of lactose intolerance in a prehistoric hunter-gatherer population in northern Europe. BMC Evol. Biol. 2010;10:1–6. doi: 10.1186/1471-2148-10-89. PubMed DOI PMC

Haug A., Høstmark A.T., Harstad O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007;6:25. doi: 10.1186/1476-511X-6-25. PubMed DOI PMC

Rozenberg S., Body J.J., Bruyere O., Bergmann P., Brandi M.L., Cooper C., Devogelaer J.P., Gielen E., Goemaere S., Kaufman J.M., et al. Effects of Dairy Products Consumption on Health: Benefits and Beliefs—A Commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Calcif. Tissue Int. 2016;98:1–17. doi: 10.1007/s00223-015-0062-x. PubMed DOI PMC

Holden C., Mace R. Phylogenetic Analysis of the Evolution of Lactose Digestion in Adults. Hum. Biol. 1997;81:597–619. doi: 10.3378/027.081.0609. PubMed DOI

Mielke J.H., Konigsberg L.W., Relethford J.H. Human Biological Variation. 2nd ed. Oxford University Press; Oxford, UK: 2011.

Selhub E.M., Logan A.C., Bested A.C. Fermented foods, microbiota, and mental health: Ancient practice meets nutritional psychiatry. J. Physiol. Anthropol. 2014;33:2. doi: 10.1186/1880-6805-33-2. PubMed DOI PMC

Kučera L., Kurka O., Barták P., Bednář P. Liquid chromatography/high resolution tandem mass spectrometry—Tool for the study of polyphenol profile changes during micro-scale biogas digestion of grape marcs. Chemosphere. 2017;166:463–472. doi: 10.1016/j.chemosphere.2016.09.124. PubMed DOI

Picariello G., Sacchi R., Addeo F. One-step characterization of triacylglycerols from animal fat by MALDI-TOF MS. Eur. J. Lipid Sci. Technol. 2007;109:511–524. doi: 10.1002/ejlt.200600255. DOI

Chochorowski J. Ekspansja Kimmeryjska na Tereny Europy Środkowej. Uniwersitet Jagielloński; Kraków, Poland: 1993. Rozprawy Habilitacyjne Nr 260.

Archeologický Ústav Akademie Věd České Republiky V Brně, Přehled Výzkumů. [(accessed on 7 December 2018)]; Available online: https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiTgfv3tI3fAhVKE7wKHSTVCm0QFjAAegQIABAC&url=http%3A%2F%2Farub.avcr.cz%2Fmiranda2%2Fexport%2Fsitesavcr%2Farub%2Fprehled-vyzkumu%2Fprehled-vydanych-cisel%2Ffiles%2FPV-57-1_eneolit.pdf&usg=AOvVaw3s5mcRvYzCL62g0TySTvqf.

Chochol J. Dosavadní výsledky anthropologického rozboru lužických žárových pohřbů z českých zemí. Památky Archeol. 1955;49:559–582.

Dokládal M. Morfologie spálených kostí: Význam pro identifikaci osob. Masaryk University; Brno, Czech Republic: 1999.

Symes S.A., Rainwater C.W., Chapman E.N., Gipson D.R., Piper A.L. The Analysis of Burned Human Remains. Academic Press; San Diego, CA, USA: 2008. Patterned thermal destruction of human remains in a forensic setting; pp. 15–54.

Walker P.L., Miller K.W.P., Richman R. The Analysis of Burned Human Remains. Academic Press; San Diego, CA, USA: 2008. Time, Temperature, and oxygen availability: An experimental study of the effects of environmental conditions on the color and organic content of cremated bone; pp. 129–135.

Adams B.J., Byrd J.E. Recovery, Analysis, and Identification of Commingled Human Remains. Humana Press; New York, NY, USA: 2008.

Lewis M.J., Senn D.R. Manual of Forensic Odontology. 5th ed. CRC Press; Boca Raton, FL, USA: 2013. Dental age estimation; pp. 211–255.

Pars petrosa kosti spánkové v žárových hrobech. [(accessed on 7 December 2018)]; Available online: https://is.muni.cz/th/mp8x9/?so=nx.

Polcerová L., Králík M., Stabrava P. Semi-Automatic Measurement of Cremated Human Remains Found on Archaeological Site of the Lusatian Culture near Town Příbor. Pravěk NŘ. 2016;24:151–174.

Norén A., Lynnerup N., Czarnetzki A., Graw M. Lateral Angle: A Method for Sexing Using the Petrous Bone. Am. J. Phys. Anthropol. 2005;128:318–323. doi: 10.1002/ajpa.20245. PubMed DOI

Stubiger G., Belgacem O. Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal. Chem. 2007;79:3206–3213. doi: 10.1021/ac062236c. PubMed DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018.

Gaude E., Chignola F., Spiliotopoulos D., Mari S., Spitaleri A., Ghitti M. muma: Metabolomics Univariate and Multivariate Analysis. [(accessed on 5 December 2018)]; Available online: https://CRAN.R-project.org/package=muma.

RIDASCREEN Fast Casein . Enzyme Immunoassay for the Quantitative Determination of Casein. R Biopharm AG; Darmstadt, Germany: 2016.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...