What about Dinner? Chemical and Microresidue Analysis Reveals the Function of Late Neolithic Ceramic Pans
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu historické články, časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000728
OP RDE, MEYS
17-17346S
Grantová Agentura České Republiky
CZ.1.05/2.1.00/19.0377
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/17_048/0007378
ERDF/ESF
IP 2019-2020/36
Jihočeská Univerzita v Českých Budějovicích
PubMed
34205105
PubMed Central
PMC8199953
DOI
10.3390/molecules26113391
PII: molecules26113391
Knihovny.cz E-zdroje
- Klíčová slova
- archaeobotany, ceramic vessel, cholesterol, gas chromatography, pests, phytoliths, proteins, starch,
- MeSH
- archeologie MeSH
- dějiny starověku MeSH
- keramika analýza dějiny MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- potraviny dějiny MeSH
- prasata MeSH
- proteiny analýza dějiny MeSH
- rostlinné extrakty analýza dějiny MeSH
- vaření dějiny MeSH
- zvířata MeSH
- Check Tag
- dějiny starověku MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Republika Severní Makedonie MeSH
- Názvy látek
- proteiny MeSH
- rostlinné extrakty MeSH
The Late Neolithic palafitte site, Ustie na Drim, in the northern part of Lake Ohrid (North Macedonia), excavated in 1962, offered ceramic fragments of large, flat, elongated pans. These artifacts could be dated by relative chronology to roughly around 5200-5000 BC. According to their shape and technological traits, the ceramic pans were probably used for baking. The attached materials on the surface of studied pan fragments were sampled for consequent chemical and microscopical analyses (i.e., analyses of starch, phytoliths, and microscopic animal remains). An immunological method revealed the presence of pork proteins in samples. The presence of organic residues of animal origin was, moreover, confirmed by the detection of cholesterol using gas chromatography coupled to mass spectrometry. Analysis of detected microscopic botanical objects revealed starch grains of several plants (i.e., oak, cattail, and grasses). An interesting find was the hair of a beetle larva, which could be interpreted contextually as the khapra beetle, a pest of grain and flour. Based on our data, we suppose that the ceramic pans from Ustie na Drim were used for the preparation of meals containing meat from common livestock in combination with cereals and wild plants.
Institute of Archaeology of the Czech Academy of Sciences 118 01 Prague Czech Republic
Zobrazit více v PubMed
Schiffer M.B. Formation Processes of the Archaeological Record. University of Utah Press; Salt Lake City, UT, USA: 1996.
Rösch M. Pollen analysis of the contents of excavated vessels—Direct archaeobotanical evidence of beverages. Veg. Hist. Archaeobotany. 2005;14:179–188. doi: 10.1007/s00334-005-0015-9. DOI
Romanus K., Baeten J., Poblome J., Accardo S., Degryse P., Jacobs P., De Vos D., Waelkens M. Wine and olive oil permeation in pitched and non-pitched ceramics: Relation with results from archaeological amphorae from Sagalassos, Turkey. J. Archaeol. Sci. 2009;36:900–909. doi: 10.1016/j.jas.2008.11.024. DOI
Preusz M., Jan T., Vilímek J., Enei F., Preusz K. Chemical profile of organic residues from ancient amphoras found in Pyrgi. J. Archaeol. Sci. Rep. 2019;24:565–573.
Spiteri C., Belser M., Crispino A. Preliminary results on content analysis of early bronze age vessels from the site of Castelluccio, Noto, Sicily. J. Archaeol. Sci. Rep. 2020;31:102533. doi: 10.1016/j.jasrep.2020.102355. DOI
Manhita A., Martins S., Gomes da Silva M., Lopes M.C., Barrocas Dias C. Transporting olive oil in roman times: Chromatographic analysis of dressel 20 amphorae from Pax Julia Civitas, Lusitania. Chromatographia. 2020;83:1055–1064. doi: 10.1007/s10337-020-03927-7. DOI
Rageot M., Mötsch A., Schorer B., Gutekunst A., Patrizi G., Zerrer M., Cafisso S., Fries-Knoblach J., Hansen L., Tarpini R., et al. The dynamics of early celtic consumption practices: A case study of the pottery from the Heuneburg. PLoS ONE. 2019;14:1–29. doi: 10.1371/journal.pone.0222991. PubMed DOI PMC
Rösch M. Evaluation of honey residues from iron age hill-top sites in southwestern Germany: Implications for local and regional land use and vegetation dynamics. Veg. Hist. Archaeobotany. 1999;8:105–112. doi: 10.1007/BF02042848. DOI
Ondrkál F., Peška J., Jagošová K., Sokolovská D., Kučera L. The cult-wagon of liptovský hrádok: First evidence of using the urnfield cult-wagons as fat-powered lamps. J. Archaeol. Sci. Rep. 2020;34:102579. doi: 10.1016/j.jasrep.2020.102579. DOI
Kvavadze E., Boschian G., Chichinadze M., Gagoshidze I., Gavagnin K., Martkoplishvili I., Rova E. Palynological and archaeological evidence for ritual use of wine in the kura-araxes period at aradetis orgora (georgia, caucasus) J. Field Archaeol. 2019;44:500–522. doi: 10.1080/00934690.2019.1669254. DOI
Brami M.N. The Diffusion of Neolithic Practices from Anatolia to Europe. A Contextual Study of Residential Construction, 8,500–5,500 BC Cal. BAR Publishing; Oxford, UK: 2017. (BAR International Series 2838).
Beneš J. Počátky Zemědělství ve Starém Světě: The Origins of Agriculture in the Ancient World. Episteme; České Budějovice, Czech Republic: 2018.
Whittle A.W.R. Europe in the Neolithic: The Creation of New Worlds. Cambridge University Press; Cambridge, UK: 1996.
Fowler C., Harding J., Hofmann D. The Oxford Handbook of Neolithic Europe. Oxford University Press; Oxford, UK: 2015.
Matlová V., Roffet-Salque M., Pavlu I., Kyselka J., Sedlarova I., Filip V., Evershed R.P. Defining pottery use and animal management at the neolithic site of bylany (czech republic) J. Archaeol. Sci. Rep. 2017;14:262–274. doi: 10.1016/j.jasrep.2017.05.028. DOI
Whelton H.L., Roffet-Salque M., Kotsakis K., Urem-Kotsou D., Evershed R.P. Strong bias towards carcass product processing at Neolithic settlements in northern Greece revealed through absorbed lipid residues of archaeological pottery. Quat. Int. 2018;496:127–139. doi: 10.1016/j.quaint.2017.12.018. DOI
Charters S., Evershed R.P., Quye A., Blinkhorn P.W., Reeves V. Simulation experiments for determining the use of ancient pottery vessels: The behaviour of epicuticular leaf wax during boiling of a leafy vegetable. J. Archaeol. Sci. 1997;24:1–7. doi: 10.1006/jasc.1995.0091. DOI
Dudd S.N., Regert M., Evershed R.P. Assessing microbial lipid contributions during laboratory degradations of fats and oils and pure triacylglycerols absorbed in ceramic potsherds. Org. Geochem. 1998;29:1345–1354. doi: 10.1016/S0146-6380(98)00093-X. DOI
Gregg M.W., Slater G.F. A new method for extraction, isolation and transesterification of free fatty acids from archaeological pottery. Archaeometry. 2010;52:833–854. doi: 10.1111/j.1475-4754.2010.00518.x. DOI
Evershed R.P., Arnot K.I., Collister J., Eglinton G., Charters S. Application of isotope ratio monitoring gas-chromatography mass-spectrometry to the analysis of organic residues of archaeological origin. Analyst. 1994;119:909–914. doi: 10.1039/AN9941900909. DOI
Kučera L., Peška J., Fojtík P., Barták P., Kučerová P., Pavelka J., Komárková V., Beneš J., Polcerová L., Králík M., et al. First direct evidence of broomcorn millet (panicum miliaceum) in central Europe. Archaeol. Anthropol. Sci. 2019;11:4221–4227. doi: 10.1007/s12520-019-00798-4. DOI
Oras E., Vahur S., Isaksson S., Kaljurand I., Leito I. MALDI-FT-ICR-MS for archaeological lipid residue analysis. J. Mass Spectrom. 2017;52:689–700. doi: 10.1002/jms.3974. PubMed DOI
Kučera L., Peška J., Fojtík P., Barták P., Sokolovská D., Pavelka J., Komárková V., Beneš J., Polcerová L., Králík M., et al. Determination of milk products in ceramic vessels of corded ware culture from a late eneolithic burial. Molecules. 2018;23:3247. doi: 10.3390/molecules23123247. PubMed DOI PMC
Hammann S., Cramp L.J.E. Towards the detection of dietary cereal processing through absorbed lipid biomarkers in archaeological pottery. J. Archaeol. Sci. 2018;93:74–81. doi: 10.1016/j.jas.2018.02.017. DOI
Liu L., Wang J., Rosenberg D., Zhao H., Lengyel G., Nadel D. Fermented beverage and food storage in 13,000 y-old stone mortars at raqefet cave, Israel: Investigating natufian ritual feasting. J. Archaeol. Sci. Rep. 2018;21:783–793. doi: 10.1016/j.jasrep.2018.08.008. DOI
Liu L., Wang J., Liu H. The brewing function of the first amphorae in the neolithic yangshao culture, north China. Archaeol. Anthropol. Sci. 2020;12:1–15. doi: 10.1007/s12520-020-01069-3. DOI
Stojanovski D., Živaljević I., Dimitrijević V., Dunne J., Evershed R.P., Balasse M., Dowle A., Hendy J., McGrath K., Fischer R., et al. Living off the land: Terrestrial-based diet and dairying in the farming communities of the Neolithic Balkans. PLoS ONE. 2020;15:e0237608. doi: 10.1371/journal.pone.0237608. PubMed DOI PMC
Pavelka J., Smejda L., Hynek R., Hrdlickova Kuckova S. Immunological detection of denatured proteins as a method for rapid identification of food residues on archaeological pottery. J. Archaeol. Sci. 2016;73:25–35. doi: 10.1016/j.jas.2016.07.004. DOI
Pavelka J., Šmejda L., Kučková Š., Menšík P. Challenge to molecular archaeology - sediments contaminated by allochthonous animal proteins. J. Liq. Chromatogr. Relat. Technol. 2020;43:19–20. doi: 10.1080/10826076.2020.1838925. DOI
Pietra F., Baldwin J.E., Williams R.M. Biodiversity and Natural Product Diversity. Elsevier Science; London, UK: 2002.
Casanova E., Knowles T.D.J., Williams C., Crump M.P., Evershed R.P. Practical considerations in high-precision compound-specific radiocarbon dating: Eliminating the effects of solvent and sample cross-contamination on accuracy and precision. Anal. Chem. 2018;90:11025–11032. doi: 10.1021/acs.analchem.8b02713. PubMed DOI
Bayliss A., Marshall P. Confessions of a serial polygamist: The reality of radiocarbon reproducibility in archaeological samples. Radiocarbon. 2019;61:1143–1158. doi: 10.1017/RDC.2019.55. DOI
Bayliss A., van der Plicht J., Bronk R.C., McCormac F.G., Healy F., Whittle A. Towards generational time-scales: The quantitative interpretation of archaeological chronologies. In: Whittle A., Healy F., Bayliss A., editors. Gathering Time: Dating the Early Neolithic Enclosures of Southern Britain and Ireland. Oxbow Books; Oxford, UK: 2011. pp. 17–59.
Philippsen B. Hard water and old food. The freshwater reservoir effect in radiocarbon dating of food residues on pottery. Doc. Praehist. 2015;42:159–170. doi: 10.4312/dp.42.10. DOI
Wagner B., Reicherter K., Daut G., Wessels M., Matzinger A., Schwalb A., Spirkovski Z., Sanxhaku M. The potential of lake ohrid for long-term palaeoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008;259:341–356. doi: 10.1016/j.palaeo.2007.10.015. DOI
Beavan-Athfield N., McFadgen B., Sparks R. Environmental influences on dietary carbon and 14C ages in modern rats and other species. Radiocarbon. 2001;43:7–14. doi: 10.1017/S0033822200031581. DOI
Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI
Reimer P.J., Austin W.E.N., Bard E., Bayliss A., Blackwell P.G., Bronk Ramsey C., Butzin M., Cheng H., Edwards R.L., Friedrich M., et al. The intcal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP) Radiocarbon. 2020;62:725–757. doi: 10.1017/RDC.2020.41. DOI
Bozarth S.R. Phytolith Systematics. Springer; Boston, UK: 1992. Classification of opal phytoliths formed in selected dicotyledons native to the great plains; pp. 193–214.
Neumann K., Strömberg C.A.E., Ball T., Albert M.R., Vrydaghs L., Cumming L.S. International code for phytolith nomenclature (ICPN) 2.0. Ann. Bot. 2019;124:189–199. doi: 10.1093/aob/mcz064. PubMed DOI PMC
Reichert E.T. The Differentiation and Specificity of Starches in Relation, to Genera, Species. Carnegie Institution of Washington; Washington, DC, USA: 2013.
Velíšek J., Koplik R., Cejpek K. The Chemistry of Food. John Wiley & Sons; Hoboken, NJ, USA: 2020.
Henry A.G., Hudson H.F., Piperno D.R. Changes in starch grain morphologies from cooking. J. Archaeol. Sci. 2009;36:915–922. doi: 10.1016/j.jas.2008.11.008. DOI
Crowther A. The differential survival of native starch during cooking and implications for archaeological analyses: A review. Archaeol. Anthropol. Sci. 2012;4:221–235. doi: 10.1007/s12520-012-0097-0. DOI
Barton H. Starch residues on museum artefacts: Implications for determining tool use. J. Archaeol. Sci. 2007;34:1752–1762. doi: 10.1016/j.jas.2007.01.007. DOI
Yang X.Y., Yu J.C., Lü H.Y., Cui T.X., Guo J.N., Ge Q.S. Starch grain analysis reveals function of grinding stone tools at Shangzhai site, Beijing. Sci. China Ser. D Earth Sci. 2009;52:1164–1171. doi: 10.1007/s11430-009-0089-9. DOI
Liu L. A long process towards agriculture in the middle yellow river valley, China: Evidence from macro- and micro-botanical remains. J. Indo-Pac. Archaeol. 2015;35:3. doi: 10.7152/jipa.v35i0.14727. DOI
Bucchi A., Burguet-Coca A., Expósito I., Aceituno Bocanegra F.J., Lozano M. Comparisons between methods for analyzing dental calculus samples from El Mirador cave (Sierra de Atapuerca, Spain) Archaeol. Anthropol. Sci. 2019;11:6305–6314. doi: 10.1007/s12520-019-00919-z. DOI
Yang X., Zhang J., Perry L., Ma Z., Wan Z., Li M., Diao X., Lu H. From the modern to the archaeological: Starch grains from millets and their wild relatives in China. J. Archaeol. Sci. 2012;39:247–254. doi: 10.1016/j.jas.2011.09.001. DOI
Liu L., Kealhofer L., Chen X., Ji P. A broad-spectrum subsistence economy in neolithic inner mongolia, China: Evidence from grinding stones. Holocene. 2014;24:726–742. doi: 10.1177/0959683614526938. DOI
Valentini Q., Favaretto S., Miola A., Sostizzo I. Unknown and known quaternary non pollen palynomorphs from sediments analysed in the Laboratory of Palynology, University of Padua Italy. Palyno-Bulletin. 2006;2:65–66.
Kvavadze E. Non pollen palynomorphs as an important object for solution of archaeological problems. In: Maritan M., Miola A., editors. Proceedings of 3th International Workshop on Quaternary Non-Pollen Palynomorphs. University of Padova Press; Padova, Italy: 2008. pp. 34–37.
Kvavadze E., Kakhiani K. Palynology of the paravani burial mound (early bronze age, Georgia) Veg. Hist. Archaeobot. 2010;19:469–478. doi: 10.1007/s00334-010-0259-x. DOI
Athanassiou C.G., Phillips T.W., Wakil W. Biology and control of the khapra beetle, trogoderma granarium, a major quarantine threat to global food security. Annu. Rev. Entomol. 2019;64:131–148. doi: 10.1146/annurev-ento-011118-111804. PubMed DOI
Kislev M.E., Nadel D., Carmi I. Epipalaeolithic (19000 BP) cereal and fruit diet at ohalo II, sea of galiee, Izrael. Rev. Palaeobot. Palynol. 1992;73:161–166. doi: 10.1016/0034-6667(92)90054-K. DOI
Kubiak-Martens L. The plant food component of the diet at the late Mesolithic (Ertebolle) settlement at Tybrind Vig, Denmark. Veg. Hist. Archaeobot. 1999;8:117–127. doi: 10.1007/BF02042850. DOI
Aranguren B., Becattini R., Lippi M.M., Revedin A. Grinding flour in upper Palaeolithic Europe (25 000 years bp) Antiquity. 2007;81:845–855. doi: 10.1017/S0003598X00095946. DOI
Revedin A., Aranguren B., Becattini R., Longo L., Marconi E., Lippi M.M., Skakun N., Sinitsyn A., Spiridonova E., Svoboda J. Thirty thousand-year-old evidence of plant food processing. Proc. Natl. Acad. Sci. USA. 2010;107:18815–18819. doi: 10.1073/pnas.1006993107. PubMed DOI PMC
Morton J.F. Cattails (typha spp.)—Weed problem or potential crop? Econ. Bot. 1975;29:7–29. doi: 10.1007/BF02861252. DOI
Gott B. Cumbungi, Typha species: A staple aboriginal food in southern Australia. AAS. 1999;1:33–49.
Vencl S. Žaludy jako potravina: k poznání významu sběru pro výživu v pravěku. Archeol. Rozhl. 1985;37:516–565.
Vencl S. Acorns as food: Again. Památ. Archeol. 1996;87:95–111.
De Hingh A.E. Ph.D. Thesis. Leiden University; Leiden, The Netherlands: 2000. Food Production and Food Procurement in the Bronze Age and Early Iron Age (2000-500 BC)
АКRM . Arheoloska Karta Na Republika Makedonija Tom II (The Archaeological Map of The Republic of Macedonia) Makedonska Akademija Na Naukite I Umetnostite; Skopje, North Macedonia: 1996.
Kuzman P. Praistoriskite palafitni naselbi vo Makedonija. In: Kuzman P., Dimitrova E., Donev J., editors. Makedonija, Mileniumski-Kulturno Istorsiki Fakti I. Media Print Makedonija and Universitet Evro-Balkan; Skopje, North Macedonia: 2013. pp. 298–429.
Todoroska V. The pile dwelling settlement “Ustie na Drim”. In: Naumov G., Fidanovski L., editors. Neolithic in Macedonia: New Knowledge and Perspectives, Centre for Prehistoric Research. Magnasken; Skopje, North Macedonia: 2016. pp. 41–53.
Benac А. Оhridsko jezero i južna Pelagonija. Arheološki odkritija na počvata na Makedonija. MANU. 2008;17:21–32.
Sanev V., Stamenova M. Neolitskata naselba “Stranata” vo selo Angelci. In: Dukovski V., Pavlovski V., Lazarev J., Dudeski L., editors. Zbornik na trudovi. Mašinski fakultet; Skopje, North Macedonia: 1989. pp. 9–63.
Sinadinovski P. Master’s Thesis. St. Cyril’s Metodi University; Skopje, North Macedonia: 2019. Docniot Neolit Vo Republika Makedonija.
Léra P. Vendbanimi i neolitit të vonë në Barç (Faza Barç II)/L’habitat du Néolithique récent à Barç (La phase Barç II) Iliria. 1987;17:25–69. doi: 10.3406/iliri.1987.1427. DOI
Benac A. Praistorija jugoslavenskih zemalja II, Neolitsko doba. Akademija nauke i umetnosti Bosne i Hercegovine; Sarajevo, North Macedonia: 1979. pp. 363–472.
Tsirtsoni Z. The Human Face of Radiocarbon: Reassessing Chronology in Prehistoric Greece and Bulgaria, 5000-3000 Cal BC. MOM Éditions; Lyon, France: 2016. Chapter 1:The chronological framework in Greece and Bulgaria between the late 6th and the early 3rd millennium BC, and the “Balkans 4000” project. DOI
Coil J., Korstanje M.A., Archer S., Hastorf C.A. Laboratory goals and considerations for multiple microfossil extraction in archaeology. J. Archaeol. Sci. 2003;30:991–1008. doi: 10.1016/S0305-4403(02)00285-6. DOI
Li M., Yang X., Ge Q., Ren X., Wan Z. Starch grains analysis of stone knives from Changning site, Qinghai Province, Northwest China. J. Archaeol. Sci. 2013;40:1667–1672. doi: 10.1016/j.jas.2012.11.018. DOI
Messner T.C., Dickau R., Harbison J. Starch grain analysis: Methodology and applications in the northeast. In: Hart J.P., editor. Current Northeast Paleoethnobotany II. University of the State of New York, State Education Department; Albany, NY, USA: 2008. pp. 111–128.
Pagán-Jiménez J.R., Rodríguez-Ramos R., Reid B.A., van den Bel M., Hofman C.L. Early dispersals of maize and other food plants into the Southern Caribbean and Northeastern South America. Quat. Sci. Rev. 2015;123:231–246. doi: 10.1016/j.quascirev.2015.07.005. DOI
Pavelka J., Kovačiková L., Šmejda L. Détermination d’espèces d’animaux domestiques à partir d’un échantillon néolithique grâce au test Elisa. Comptes Rendus Palevol. 2011;10:61–70. doi: 10.1016/j.crpv.2010.10.012. DOI
Dinh T.T.N., Thompson L.D., Galyean M.L., Brooks J.C., Patterson K.Y., Boylan L.M. Cholesterol content and methods for cholesterol determination in meat and poultry. Compr. Rev. Food. Sci Food Saf. 2011;10:269–289. doi: 10.1111/j.1541-4337.2011.00158.x. DOI