• This record comes from PubMed

MoO3 on zeolites MCM-22, MCM-56 and 2D-MFI as catalysts for 1-octene metathesis

. 2018 ; 14 () : 2931-2939. [epub] 20181127

Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection

Document type Journal Article

Highly active olefin metathesis catalysts were prepared by thermal spreading MoO3 and/or MoO2(acac)2 on MWW zeolites (MCM-22, delaminated MCM-56) and on two-dimensional MFI (all in NH4 + form). The catalysts' activities were tested in the metathesis of neat 1-octene (as an example of a longer chain olefin) at 40 °C. Catalysts with 6 wt % or 5 wt % of Mo were used. The acidic character of the supports had an important effect on both the catalyst activity and selectivity. The catalyst activity increases in the order 6MoO3/HZSM-5(25) (Si/Al = 25) << 6MoO2(acac)2/MCM-22(70) < 6MoO3/2D-MFI(26) < 6MoO3/MCM-56(13) < 6MoO3/MCM-22(28) reflecting both the enhancing effect of the supports' acidity and accessibility of the catalytic species on the surface. On the other hand the supports' acidity decreases the selectivity to the main metathesis product C14 due to an acid-catalyzed double bond isomerization (followed by cross metathesis) and oligomerization. 6MoO3/2D-MFI(26) with a lower concentration of the acidic centres resulting in catalysts of moderate activity but with the highest selectivity.

See more in PubMed

Ivin K J, Mol J C. Olefin Metathesis and Metathesis Polymerization. 2nd ed. London: Academic Press; 1997. Applications of the Olefin Metathesis Reaction; pp. 397–410. DOI

Hahn T, Bentrup U, Armbrüster M, Kondratenko E V, Linke D. ChemCatChem. 2014;6(6):1664–1672. doi: 10.1002/cctc.201400040. DOI

Zhang D, Li X, Liu S, Huang S, Zhu X, Chen F, Xie S, Xu L. Appl Catal, A. 2012;439-440:171–178. doi: 10.1016/j.apcata.2012.07.002. DOI

Hahn T, Kondratenko E V, Linke D. Chem Commun. 2014;50:9060–9063. doi: 10.1039/c4cc01827c. PubMed DOI

Gholampour N, Yusubov M, Verpoort F. Catal Rev: Sci Eng. 2016;58:113–156. doi: 10.1080/01614940.2015.1100871. DOI

Lwin S, Wachs I E. ACS Catal. 2014;4:2505–2520. doi: 10.1021/cs500528h. DOI

Amakawa K, Kröhnert J, Wrabetz S, Frank B, Hemmann F, Jäger C, Schlögl R, Trunschke A. ChemCatChem. 2015;7:4059–4065. doi: 10.1002/cctc.201500725. DOI

Balcar H, Čejka J. Coord Chem Rev. 2013;257:3107–3124. doi: 10.1016/j.ccr.2013.07.026. DOI

Balcar H, Mishra D, Marceau E, Carrier X, Žilková N, Bastl Z. Appl Catal, A. 2009;359:129–135. doi: 10.1016/j.apcata.2009.02.037. DOI

Topka P, Balcar H, Rathouský J, Žilková N, Verpoort F, Čejka J. Microporous Mesoporous Mater. 2006;96:44–54. doi: 10.1016/j.micromeso.2006.06.016. DOI

Lin B, Zhang Q, Wang Y. Ind Eng Chem Res. 2009;48:10788–10795. doi: 10.1021/ie901227p. DOI

Handzlik J. J Mol Catal A: Chem. 2010;316:106–111. doi: 10.1016/j.molcata.2009.10.007. DOI

Li X, Zhang W, Liu S, Han X, Xu L, Bao X. J Mol Catal A: Chem. 2006;250:94–99. doi: 10.1016/j.molcata.2006.01.046. DOI

Díaz U, Corma A. Dalton Trans. 2014;43:10292–10316. doi: 10.1039/c3dt53181c. PubMed DOI

Roth W J, Nachtigall P, Morris R E, Čejka J. Chem Rev. 2014;114:4807–4837. doi: 10.1021/cr400600f. PubMed DOI

Wei R, Yang H, Scott J A, Aguey-Zinsou K-F, Zhang D. Mater Today Chem. 2018;8:1–12. doi: 10.1016/j.mtchem.2018.01.002. DOI

Opanasenko M V, Roth W J, Čejka J. Catal Sci Technol. 2016;6:2467–2484. doi: 10.1039/c5cy02079d. DOI

Juttu G G, Lobo R F. Microporous Mesoporous Mater. 2000;40:9–23. doi: 10.1016/s1387-1811(00)00233-x. DOI

Roth W J, Čejka J, Millini R, Montanari E, Gil B, Kubu M. Chem Mater. 2015;27(13):4620–4629. doi: 10.1021/acs.chemmater.5b01030. DOI

Leonowicz M E, Lawton J A, Lawton S L, Rubin M K. Science. 1994;264(5167):1910–1913. doi: 10.1126/science.264.5167.1910. PubMed DOI

Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature. 2009;461:246–249. doi: 10.1038/nature08288. PubMed DOI

Přech J, Pizarro P, Serrano D P, Čejka J. Chem Soc Rev. 2018;47:8263–8306. doi: 10.1039/c8cs00370j. PubMed DOI

Liu S, Li X, Xin W, Xie S, Zeng P, Zhang L, Xu L. J Nat Gas Chem. 2010;19:482–486. doi: 10.1016/s1003-9953(09)60095-5. DOI

Balcar H, Žilková N, Kubů M, Mazur M, Bastl Z, Čejka J. Beilstein J Org Chem. 2015;11:2087–2096. doi: 10.3762/bjoc.11.225. PubMed DOI PMC

Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Chem Soc Rev. 2015;44:7262–7341. doi: 10.1039/c5cs00396b. PubMed DOI

Topka P. Molybdenum oxide supported on mesoporous molecular sieves – new catalysts for alkene metathesis and alkyne polymerization. Prague: Charles University; 2008.

Handzlik J, Ogonowski J, Stoch J, Mikołajczyk M, Michorczyk P. Appl Catal, A. 2006;312:213–219. doi: 10.1016/j.apcata.2006.07.002. DOI

Lim T H, Nam K, Song I K, Lee K-Y, Kim D H. Appl Catal, A. 2018;552:11–20. doi: 10.1016/j.apcata.2017.12.021. DOI

Zhao P, Ye L, Sun Z, Lo B T W, Woodcock H, Huang C, Tang C, Kirkland A I, Mei D, Edman Tsang S C. J Am Chem Soc. 2018;140(21):6661–6667. doi: 10.1021/jacs.8b03012. PubMed DOI

Knifton J F, Sanderson J R, Dai P E. Catal Lett. 1994;28:223–230. doi: 10.1007/bf00806051. DOI

O'Connor C T, Kojima M. Catal Today. 1990;6(3):329–349. doi: 10.1016/0920-5861(90)85008-c. DOI

Kresge C T, Roth W J, Simmons K G, Vartuli J C, inventors. Crystalline oxide material. 5,229,341. U.S. Patent. 1993 Jun 20;

Fung A S, Lawton S L, Roth W J, inventors. Synthetic layered MCM-56, its synthesis and use. 5,362,697. U. S. Patent. 1994 Nov 8;

Emeis C A. J Catal. 1993;141:347–354. doi: 10.1006/jcat.1993.1145. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...