MoO3 on zeolites MCM-22, MCM-56 and 2D-MFI as catalysts for 1-octene metathesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30546477
PubMed Central
PMC6278768
DOI
10.3762/bjoc.14.272
Knihovny.cz E-zdroje
- Klíčová slova
- 1-octene, metathesis, molybdenum oxide, thermal spreading, zeolites,
- Publikační typ
- časopisecké články MeSH
Highly active olefin metathesis catalysts were prepared by thermal spreading MoO3 and/or MoO2(acac)2 on MWW zeolites (MCM-22, delaminated MCM-56) and on two-dimensional MFI (all in NH4 + form). The catalysts' activities were tested in the metathesis of neat 1-octene (as an example of a longer chain olefin) at 40 °C. Catalysts with 6 wt % or 5 wt % of Mo were used. The acidic character of the supports had an important effect on both the catalyst activity and selectivity. The catalyst activity increases in the order 6MoO3/HZSM-5(25) (Si/Al = 25) << 6MoO2(acac)2/MCM-22(70) < 6MoO3/2D-MFI(26) < 6MoO3/MCM-56(13) < 6MoO3/MCM-22(28) reflecting both the enhancing effect of the supports' acidity and accessibility of the catalytic species on the surface. On the other hand the supports' acidity decreases the selectivity to the main metathesis product C14 due to an acid-catalyzed double bond isomerization (followed by cross metathesis) and oligomerization. 6MoO3/2D-MFI(26) with a lower concentration of the acidic centres resulting in catalysts of moderate activity but with the highest selectivity.
Zobrazit více v PubMed
Ivin K J, Mol J C. Olefin Metathesis and Metathesis Polymerization. 2nd ed. London: Academic Press; 1997. Applications of the Olefin Metathesis Reaction; pp. 397–410. DOI
Hahn T, Bentrup U, Armbrüster M, Kondratenko E V, Linke D. ChemCatChem. 2014;6(6):1664–1672. doi: 10.1002/cctc.201400040. DOI
Zhang D, Li X, Liu S, Huang S, Zhu X, Chen F, Xie S, Xu L. Appl Catal, A. 2012;439-440:171–178. doi: 10.1016/j.apcata.2012.07.002. DOI
Hahn T, Kondratenko E V, Linke D. Chem Commun. 2014;50:9060–9063. doi: 10.1039/c4cc01827c. PubMed DOI
Gholampour N, Yusubov M, Verpoort F. Catal Rev: Sci Eng. 2016;58:113–156. doi: 10.1080/01614940.2015.1100871. DOI
Lwin S, Wachs I E. ACS Catal. 2014;4:2505–2520. doi: 10.1021/cs500528h. DOI
Amakawa K, Kröhnert J, Wrabetz S, Frank B, Hemmann F, Jäger C, Schlögl R, Trunschke A. ChemCatChem. 2015;7:4059–4065. doi: 10.1002/cctc.201500725. DOI
Balcar H, Čejka J. Coord Chem Rev. 2013;257:3107–3124. doi: 10.1016/j.ccr.2013.07.026. DOI
Balcar H, Mishra D, Marceau E, Carrier X, Žilková N, Bastl Z. Appl Catal, A. 2009;359:129–135. doi: 10.1016/j.apcata.2009.02.037. DOI
Topka P, Balcar H, Rathouský J, Žilková N, Verpoort F, Čejka J. Microporous Mesoporous Mater. 2006;96:44–54. doi: 10.1016/j.micromeso.2006.06.016. DOI
Lin B, Zhang Q, Wang Y. Ind Eng Chem Res. 2009;48:10788–10795. doi: 10.1021/ie901227p. DOI
Handzlik J. J Mol Catal A: Chem. 2010;316:106–111. doi: 10.1016/j.molcata.2009.10.007. DOI
Li X, Zhang W, Liu S, Han X, Xu L, Bao X. J Mol Catal A: Chem. 2006;250:94–99. doi: 10.1016/j.molcata.2006.01.046. DOI
Díaz U, Corma A. Dalton Trans. 2014;43:10292–10316. doi: 10.1039/c3dt53181c. PubMed DOI
Roth W J, Nachtigall P, Morris R E, Čejka J. Chem Rev. 2014;114:4807–4837. doi: 10.1021/cr400600f. PubMed DOI
Wei R, Yang H, Scott J A, Aguey-Zinsou K-F, Zhang D. Mater Today Chem. 2018;8:1–12. doi: 10.1016/j.mtchem.2018.01.002. DOI
Opanasenko M V, Roth W J, Čejka J. Catal Sci Technol. 2016;6:2467–2484. doi: 10.1039/c5cy02079d. DOI
Juttu G G, Lobo R F. Microporous Mesoporous Mater. 2000;40:9–23. doi: 10.1016/s1387-1811(00)00233-x. DOI
Roth W J, Čejka J, Millini R, Montanari E, Gil B, Kubu M. Chem Mater. 2015;27(13):4620–4629. doi: 10.1021/acs.chemmater.5b01030. DOI
Leonowicz M E, Lawton J A, Lawton S L, Rubin M K. Science. 1994;264(5167):1910–1913. doi: 10.1126/science.264.5167.1910. PubMed DOI
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature. 2009;461:246–249. doi: 10.1038/nature08288. PubMed DOI
Přech J, Pizarro P, Serrano D P, Čejka J. Chem Soc Rev. 2018;47:8263–8306. doi: 10.1039/c8cs00370j. PubMed DOI
Liu S, Li X, Xin W, Xie S, Zeng P, Zhang L, Xu L. J Nat Gas Chem. 2010;19:482–486. doi: 10.1016/s1003-9953(09)60095-5. DOI
Balcar H, Žilková N, Kubů M, Mazur M, Bastl Z, Čejka J. Beilstein J Org Chem. 2015;11:2087–2096. doi: 10.3762/bjoc.11.225. PubMed DOI PMC
Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Chem Soc Rev. 2015;44:7262–7341. doi: 10.1039/c5cs00396b. PubMed DOI
Topka P. Molybdenum oxide supported on mesoporous molecular sieves – new catalysts for alkene metathesis and alkyne polymerization. Prague: Charles University; 2008.
Handzlik J, Ogonowski J, Stoch J, Mikołajczyk M, Michorczyk P. Appl Catal, A. 2006;312:213–219. doi: 10.1016/j.apcata.2006.07.002. DOI
Lim T H, Nam K, Song I K, Lee K-Y, Kim D H. Appl Catal, A. 2018;552:11–20. doi: 10.1016/j.apcata.2017.12.021. DOI
Zhao P, Ye L, Sun Z, Lo B T W, Woodcock H, Huang C, Tang C, Kirkland A I, Mei D, Edman Tsang S C. J Am Chem Soc. 2018;140(21):6661–6667. doi: 10.1021/jacs.8b03012. PubMed DOI
Knifton J F, Sanderson J R, Dai P E. Catal Lett. 1994;28:223–230. doi: 10.1007/bf00806051. DOI
O'Connor C T, Kojima M. Catal Today. 1990;6(3):329–349. doi: 10.1016/0920-5861(90)85008-c. DOI
Kresge C T, Roth W J, Simmons K G, Vartuli J C, inventors. Crystalline oxide material. 5,229,341. U.S. Patent. 1993 Jun 20;
Fung A S, Lawton S L, Roth W J, inventors. Synthetic layered MCM-56, its synthesis and use. 5,362,697. U. S. Patent. 1994 Nov 8;
Emeis C A. J Catal. 1993;141:347–354. doi: 10.1006/jcat.1993.1145. DOI