An Ab Initio Study of Pressure-Induced Reversal of Elastically Stiff and Soft Directions in YN and ScN and Its Effect in Nanocomposites Containing These Nitrides

. 2018 Dec 14 ; 8 (12) : . [epub] 20181214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30558137

Grantová podpora
16-24711S Grantová Agentura České Republiky
17-18566S Grantová Agentura České Republiky
CEITEC 2020, LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
P30341-N36 Austrian Science Fund
IPMINFRA, LM2015069 Ministerstvo Školství, Mládeže a Tělovýchovy

Using quantum-mechanical calculations of second- and third-order elastic constants for YN and ScN with the rock-salt (B1) structure, we predict that these materials change the fundamental type of their elastic anisotropy by rather moderate hydrostatic pressures of a few GPa. In particular, YN with its zero-pressure elastic anisotropy characterized by the Zener anisotropy ratio A Z = 2 C 44 / ( C 11 - C 12 ) = 1.046 becomes elastically isotropic at the hydrostatic pressure of 1.2 GPa. The lowest values of the Young's modulus (so-called soft directions) change from 〈100〉 (in the zero-pressure state) to the 〈111〉 directions (for pressures above 1.2 GPa). It means that the crystallographic orientations of stiffest (also called hard) elastic response and those of the softest one are reversed when comparing the zero-pressure state with that for pressures above the critical level. Qualitatively, the same type of reversal is predicted for ScN with the zero-pressure value of the Zener anisotropy factor A Z = 1.117 and the critical pressure of about 6.5 GPa. Our predictions are based on both second-order and third-order elastic constants determined for the zero-pressure state but the anisotropy change is then verified by explicit calculations of the second-order elastic constants for compressed states. Both materials are semiconductors in the whole range of studied pressures. Our phonon calculations further reveal that the change in the type of the elastic anisotropy has only a minor impact on the vibrational properties. Our simulations of biaxially strained states of YN demonstrate that a similar change in the elastic anisotropy can be achieved also under stress conditions appearing, for example, in coherently co-existing nanocomposites such as superlattices. Finally, after selecting ScN and PdN (both in B1 rock-salt structure) as a pair of suitable candidate materials for such a superlattice (due to the similarity of their lattice parameters), our calculations of such a coherent nanocomposite results again in a reversed elastic anisotropy (compared with the zero-pressure state of ScN).

Zobrazit více v PubMed

Bacon D., Barnett D., Scattergood R. Anisotropic continuum theory of lattice defects. Prog. Mater. Sci. 1979;23:51–262. doi: 10.1016/0079-6425(80)90007-9. DOI

Ting T.C.T. Anisotropic Elasticity. Oxford University Press; New York, NY, USA: 1996.

Udyansky A., von Pezold J., Bugaev V.N., Friák M., Neugebauer J. Interplay between long-range elastic and short-range chemical interactions in Fe-C martensite formation. Phys. Rev. B. 2009;79:224112. doi: 10.1103/PhysRevB.79.224112. DOI

Lothe J. Dislocations in Continuous Elastic Media, in Elastic Strain Fields and Dislocation Mobility. Volume 31 Elsevier; Amsterdam, The Netherlands: 1992. (Series of Modern Problems in Condensed Matter Physics).

Mouhat F., Coudert F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI

Kraut E.A. Advances in the theory of anisotropic elastic wave propagation. Rev. Geophys. 1963;1:401–448. doi: 10.1029/RG001i003p00401. DOI

Ting T.C.T. Longitudinal and transverse waves in anisotropic elastic materials. Acta Mech. 2006;185:147–164. doi: 10.1007/s00707-006-0333-8. DOI

Thurston R., Brugger K. Third-order elastic constants + velocity of small amplitude elastic waves in homogeneously stressed media. Phys. Rev. 1964;133:A1604. doi: 10.1103/PhysRev.133.A1604. DOI

Brugger K., Thurston R. Sound velocity in stressed crystals + 3-order elastic coefficients. J. Acoust. Soc. Am. 1964;36:1041. doi: 10.1121/1.2143331. DOI

Brugger K. Pure modes for elastic waves in crystals. J. Appl. Phys. 1965;36:759. doi: 10.1063/1.1714215. DOI

Brugger K. Generalized Gruneisen parameters in anisotropic Debye model. Phys. Rev. 1965;137:1826. doi: 10.1103/PhysRev.137.A1826. DOI

Körmann F., Dick A., Grabowski B., Hallstedt B., Hickel T., Neugebauer J. Free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. Phys. Rev. B. 2008;78:033102. doi: 10.1103/PhysRevB.78.033102. DOI

Zhao J., Winey J.M., Gupta Y.M. First-principles calculations of second- and third-order elastic constants for single crystals of arbitrary symmetry. Phys. Rev. B. 2007;75:094105. doi: 10.1103/PhysRevB.75.094105. DOI

Ledbetter H., Naimon E. Elastic properties of metals and alloys. II. Copper. J. Phys. Chem. Ref. Data. 1974;3:897. doi: 10.1063/1.3253150. DOI

Lincoln R.C., Koliwad K.M., Ghate P.B. Morse-Potential Evaluation of Second- and Third-Order Elastic Constants of Some Cubic Metals. Phys. Rev. 1967;157:463–466. doi: 10.1103/PhysRev.157.463. DOI

De Jong M., Winter I., Chrzan D.C., Asta M. Ideal strength and ductility in metals from second- and third-order elastic constants. Phys. Rev. B. 2017;96:014105. doi: 10.1103/PhysRevB.96.014105. DOI

Kim K.Y., Sachse W., Every A.G. On the determination of sound speeds in cubic crystals and isotropic media using a broadband ultrasonic point-source/point-receiver method. J. Acoust. Soc. Am. 1993;93:1393–1406. doi: 10.1121/1.405426. DOI

Tasnádi F., Abrikosov I.A., Rogström L., Almer J., Johansson M.P., Odén M. Significant elastic anisotropy in Ti1−xAlxN alloys. Appl. Phys. Lett. 2010;97:231902. doi: 10.1063/1.3524502. DOI

Saha B., Sands T.D., Waghmare U.V. Electronic structure, vibrational spectrum, and thermal properties of yttrium nitride: A first-principles study. J. Appl. Phys. 2011;109:073720. doi: 10.1063/1.3561499. DOI

Yang J.W., An L. Ab initio calculation of the electronic, mechanical, and thermodynamic properties of yttrium nitride with the rocksalt structure. Phys. Status Solidi (b) 2014;251:792–802. doi: 10.1002/pssb.201350064. DOI

Mancera L., Rodriguez J.A., Takeuchi N. Theoretical study of the stability of wurtzite, zinc-blende, NaCl and CsCl phases in group IIIB and IIIA nitrides. Phys. Status Solidi (b) 2004;241:2424–2428. doi: 10.1002/pssb.200404910. DOI

Zerroug S., Ali Sahraoui F., Bouarissa N. Ab initio calculations of yttrium nitride: Structural and electronic properties. Appl. Phys. A. 2009;97:345–350. doi: 10.1007/s00339-009-5243-x. DOI

Stampfl C., Mannstadt W., Asahi R., Freeman A.J. Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys. Rev. B. 2001;63:155106. doi: 10.1103/PhysRevB.63.155106. DOI

Liu Z.T.Y., Zhou X., Khare S.V., Gall D. Structural, mechanical and electronic properties of 3d transition metal nitrides in cubic zincblende, rocksalt and cesium chloride structures: A first-principles investigation. J. Phys. Condens. Matter. 2014;26:025404. doi: 10.1088/0953-8984/26/2/025404. PubMed DOI

Mattesini M., Magnuson M., Tasnádi F., Höglund C., Abrikosov I.A., Hultman L. Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites: A first-principles study. Phys. Rev. B. 2009;79:125122. doi: 10.1103/PhysRevB.79.125122. DOI

Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI

Holec D., Friák M., Neugebauer J., Mayrhofer P.H. Trends in the elastic response of binary early transition metal nitrides. Phys. Rev. B. 2012;85:064101. doi: 10.1103/PhysRevB.85.064101. DOI

Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Zhou L., Holec D., Mayrhofer P.H. First-principles study of elastic properties of Cr-Al-N. J. Appl. Phys. 2013;113:043511. doi: 10.1063/1.4789378. DOI

Togo A., Tanaka I. First principles phonon calculations in materials science. Scr. Mater. 2015;108:1–5. doi: 10.1016/j.scriptamat.2015.07.021. DOI

Mancera L., Rodríguez J.A., Takeuchi N. First principles calculations of the ground state properties and structural phase transformation in YN. J. Phys. Condens. Matter. 2003;15:2625. doi: 10.1088/0953-8984/15/17/316. DOI

Pearson’s Handbook of Crystallographic Data for Intermetallic Phases. American Society for Metals; Metals Park, OH, USA: 1985.

Brik M., Ma C.G. First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Sc, Ti, V, Cr, Zr, Nb) Comput. Mater. Sci. 2012;51:380–388. doi: 10.1016/j.commatsci.2011.08.008. DOI

Gall D., Petrov I., Hellgren N., Hultman L., Sundgren J.E., Greene J.E. Growth of poly- and single-crystal ScN on MgO(001): Role of low-energy DOI

Birch F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947;71:809. doi: 10.1103/PhysRev.71.809. DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Titrian H., Aydin U., Friák M., Ma D., Raabe D., Neugebauer J. Self-consistent Scale-bridging Approach to Compute the Elasticity of Multi-phase Polycrystalline Materials. MRS Proc. 2013;1524:mrsf12-1524-rr06-03. doi: 10.1557/opl.2013.41. DOI

Friák M., Counts W., Ma D., Sander B., Holec D., Raabe D., Neugebauer J. Theory-Guided Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties. Materials. 2012;5:1853–1872. doi: 10.3390/ma5101853. DOI

Zhu L.F., Friák M., Lymperakis L., Titrian H., Aydin U., Janus A., Fabritius H.O., Ziegler A., Nikolov S., Hemzalová P., Raabe D., Neugebauer J. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals. J. Mech. Behav. Biomed. Mater. 2013;20:296–304. doi: 10.1016/j.jmbbm.2013.01.030. PubMed DOI

Mayrhofer P.H., Fischer F.D., Boehm H.J., Mitterer C., Schneider J.M. Energetic balance and kinetics for the decomposition of supersaturated Ti1-xAlxN. Acta Mater. 2007;55:1441–1446. doi: 10.1016/j.actamat.2006.09.045. DOI

Wu L., Chen M., Li C., Zhou J., Shen L., Wang Y., Zhong Z., Feng M., Zhang Y., Han K., et al. Ferromagnetism and matrix-dependent charge transfer in strained LaMnO3-LaCoO3 superlattices. Mater. Res. Lett. 2018;6:501–507. doi: 10.1080/21663831.2018.1482840. DOI

Koutná N., Holec D., Friák M., Mayrhofer P.H., Šob M. Stability and elasticity of metastable solid solutions and superlattices in the MoN–TaN system: First-principles calculations. Mater. Des. 2018;144:310–322. doi: 10.1016/j.matdes.2018.02.033. DOI

Jiang M., Xiao H.Y., Peng S.M., Yang G.X., Liu Z.J., Zu X.T. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-20155-0. PubMed DOI PMC

Wen Y.N., Gao P.F., Xia M.G., Zhang S.L. Half-metallic ferromagnetism prediction in MoS2-based two-dimensional superlattice from first-principles. Mod. Phys. Lett. B. 2018;32 doi: 10.1142/S0217984918500987. DOI

Friák M., Tytko D., Holec D., Choi P.P., Eisenlohr P., Raabe D., Neugebauer J. Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. New J. Phys. 2015;17:093004. doi: 10.1088/1367-2630/17/9/093004. DOI

Dai Q., Eckern U., Schwingenschlog U. Effects of oxygen vacancies on the electronic structure of the (LaVO3)6/SrVO3 superlattice: A computational study. New J. Phys. 2018;20 doi: 10.1088/1367-2630/aac486. DOI

Jiang M., Xiao H., Peng S., Qiao L., Yang G., Liu Z., Zu X. First-Principles Study of Point Defects in GaAs/AlAs Superlattice: the Phase Stability and the Effects on the Band Structure and Carrier Mobility. Nanoscale Res. Lett. 2018;13 doi: 10.1186/s11671-018-2719-7. PubMed DOI PMC

Chen H., Millis A.J., Marianetti C.A. Engineering Correlation Effects via Artificially Designed Oxide Superlattices. Phys. Rev. Lett. 2013;111 doi: 10.1103/PhysRevLett.111.116403. PubMed DOI

Mottura A., Janotti A., Pollock T.M. A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L12-Co3(Al,W) Intermetallics. 2012;28:138–143. doi: 10.1016/j.intermet.2012.04.020. DOI

Rosengaard N., Skriver H. Ab-initio study of antiphase boundaries and stacking-faults in L12 and D022 compounds. Phys. Rev. B. 1994;50:4848–4858. doi: 10.1103/PhysRevB.50.4848. PubMed DOI

Torres-Pardo A., Gloter A., Zubko P., Jecklin N., Lichtensteiger C., Colliex C., Triscone J.M., Stephan O. Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale. Phys. Rev. B. 2011;84 doi: 10.1103/PhysRevB.84.220102. DOI

Chawla V., Holec D., Mayrhofer P.H. Stabilization criteria for cubic AlN in TiN/AlN and CrN/AlN bi-layer systems. J. Phys. D Appl. Phys. 2013;46 doi: 10.1088/0022-3727/46/4/045305. DOI

Cooper V.R., Rabe K.M. Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices. Phys. Rev. B. 2009;79 doi: 10.1103/PhysRevB.79.180101. DOI

Chen B., Zhang Q., Bernholc J. Si diffusion in gaas and si-induced interdiffusion in gaas/alas superlattices. Phys. Rev. B. 1994;49:2985–2988. doi: 10.1103/PhysRevB.49.2985. PubMed DOI

Schmid U., Christensen N., Cardona M., Lukes F., Ploog K. Optical anisotropy in GaAs/AlSs(110) superlattices. Phys. Rev. B. 1992;45:3546–3551. doi: 10.1103/PhysRevB.45.3546. PubMed DOI

Gibson Q.D., Schoop L.M., Weber A.P., Ji H., Nadj-Perge S., Drozdov I.K., Beidenkopf H., Sadowski J.T., Fedorov A., Yazdani A., et al. Termination-dependent topological surface states of the natural superlattice phase Bi4Se3. Phys. Rev. B. 2013;88 doi: 10.1103/PhysRevB.88.081108. DOI

Park C., Chang K. Structural and electronic-properties of gap-alp (001) superlattices. Phys. Rev. B. 1993;47:12709–12715. doi: 10.1103/PhysRevB.47.12709. PubMed DOI

Romanyuk O., Hannappel T., Grosse F. Atomic and electronic structure of GaP/Si(111), GaP/Si(110), and GaP/Si(113) interfaces and superlattices studied by density functional theory. Phys. Rev. B. 2013;88 doi: 10.1103/PhysRevB.88.115312. DOI

Abdulsattar M.A. SiGe superlattice nanocrystal pure and doped with substitutional phosphorus single atom: Density functional theory study. Superlattices Microstruct. 2011;50:377–385. doi: 10.1016/j.spmi.2011.07.017. DOI

Botti S., Vast N., Reining L., Olevano V., Andreani L. Ab initio and semiempirical dielectric response of superlattices. Phys. Rev. B. 2004;70 doi: 10.1103/PhysRevB.70.045301. PubMed DOI

Rondinelli J.M., Spaldin N.A. Electron-lattice instabilities suppress cuprate-like electronic structures in SrFeO3/OSrTiO3 superlattices. Phys. Rev. B. 2010;81 doi: 10.1103/PhysRevB.81.085109. DOI

Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...