An Ab Initio Study of Pressure-Induced Reversal of Elastically Stiff and Soft Directions in YN and ScN and Its Effect in Nanocomposites Containing These Nitrides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-24711S
Grantová Agentura České Republiky
17-18566S
Grantová Agentura České Republiky
CEITEC 2020, LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
P30341-N36
Austrian Science Fund
IPMINFRA, LM2015069
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30558137
PubMed Central
PMC6316261
DOI
10.3390/nano8121049
PII: nano8121049
Knihovny.cz E-zdroje
- Klíčová slova
- ScN, YN, ab initio, elasticity, nanocomposites, pressure, stability,
- Publikační typ
- časopisecké články MeSH
Using quantum-mechanical calculations of second- and third-order elastic constants for YN and ScN with the rock-salt (B1) structure, we predict that these materials change the fundamental type of their elastic anisotropy by rather moderate hydrostatic pressures of a few GPa. In particular, YN with its zero-pressure elastic anisotropy characterized by the Zener anisotropy ratio A Z = 2 C 44 / ( C 11 - C 12 ) = 1.046 becomes elastically isotropic at the hydrostatic pressure of 1.2 GPa. The lowest values of the Young's modulus (so-called soft directions) change from 〈100〉 (in the zero-pressure state) to the 〈111〉 directions (for pressures above 1.2 GPa). It means that the crystallographic orientations of stiffest (also called hard) elastic response and those of the softest one are reversed when comparing the zero-pressure state with that for pressures above the critical level. Qualitatively, the same type of reversal is predicted for ScN with the zero-pressure value of the Zener anisotropy factor A Z = 1.117 and the critical pressure of about 6.5 GPa. Our predictions are based on both second-order and third-order elastic constants determined for the zero-pressure state but the anisotropy change is then verified by explicit calculations of the second-order elastic constants for compressed states. Both materials are semiconductors in the whole range of studied pressures. Our phonon calculations further reveal that the change in the type of the elastic anisotropy has only a minor impact on the vibrational properties. Our simulations of biaxially strained states of YN demonstrate that a similar change in the elastic anisotropy can be achieved also under stress conditions appearing, for example, in coherently co-existing nanocomposites such as superlattices. Finally, after selecting ScN and PdN (both in B1 rock-salt structure) as a pair of suitable candidate materials for such a superlattice (due to the similarity of their lattice parameters), our calculations of such a coherent nanocomposite results again in a reversed elastic anisotropy (compared with the zero-pressure state of ScN).
Zobrazit více v PubMed
Bacon D., Barnett D., Scattergood R. Anisotropic continuum theory of lattice defects. Prog. Mater. Sci. 1979;23:51–262. doi: 10.1016/0079-6425(80)90007-9. DOI
Ting T.C.T. Anisotropic Elasticity. Oxford University Press; New York, NY, USA: 1996.
Udyansky A., von Pezold J., Bugaev V.N., Friák M., Neugebauer J. Interplay between long-range elastic and short-range chemical interactions in Fe-C martensite formation. Phys. Rev. B. 2009;79:224112. doi: 10.1103/PhysRevB.79.224112. DOI
Lothe J. Dislocations in Continuous Elastic Media, in Elastic Strain Fields and Dislocation Mobility. Volume 31 Elsevier; Amsterdam, The Netherlands: 1992. (Series of Modern Problems in Condensed Matter Physics).
Mouhat F., Coudert F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 2014;90:224104. doi: 10.1103/PhysRevB.90.224104. DOI
Kraut E.A. Advances in the theory of anisotropic elastic wave propagation. Rev. Geophys. 1963;1:401–448. doi: 10.1029/RG001i003p00401. DOI
Ting T.C.T. Longitudinal and transverse waves in anisotropic elastic materials. Acta Mech. 2006;185:147–164. doi: 10.1007/s00707-006-0333-8. DOI
Thurston R., Brugger K. Third-order elastic constants + velocity of small amplitude elastic waves in homogeneously stressed media. Phys. Rev. 1964;133:A1604. doi: 10.1103/PhysRev.133.A1604. DOI
Brugger K., Thurston R. Sound velocity in stressed crystals + 3-order elastic coefficients. J. Acoust. Soc. Am. 1964;36:1041. doi: 10.1121/1.2143331. DOI
Brugger K. Pure modes for elastic waves in crystals. J. Appl. Phys. 1965;36:759. doi: 10.1063/1.1714215. DOI
Brugger K. Generalized Gruneisen parameters in anisotropic Debye model. Phys. Rev. 1965;137:1826. doi: 10.1103/PhysRev.137.A1826. DOI
Körmann F., Dick A., Grabowski B., Hallstedt B., Hickel T., Neugebauer J. Free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. Phys. Rev. B. 2008;78:033102. doi: 10.1103/PhysRevB.78.033102. DOI
Zhao J., Winey J.M., Gupta Y.M. First-principles calculations of second- and third-order elastic constants for single crystals of arbitrary symmetry. Phys. Rev. B. 2007;75:094105. doi: 10.1103/PhysRevB.75.094105. DOI
Ledbetter H., Naimon E. Elastic properties of metals and alloys. II. Copper. J. Phys. Chem. Ref. Data. 1974;3:897. doi: 10.1063/1.3253150. DOI
Lincoln R.C., Koliwad K.M., Ghate P.B. Morse-Potential Evaluation of Second- and Third-Order Elastic Constants of Some Cubic Metals. Phys. Rev. 1967;157:463–466. doi: 10.1103/PhysRev.157.463. DOI
De Jong M., Winter I., Chrzan D.C., Asta M. Ideal strength and ductility in metals from second- and third-order elastic constants. Phys. Rev. B. 2017;96:014105. doi: 10.1103/PhysRevB.96.014105. DOI
Kim K.Y., Sachse W., Every A.G. On the determination of sound speeds in cubic crystals and isotropic media using a broadband ultrasonic point-source/point-receiver method. J. Acoust. Soc. Am. 1993;93:1393–1406. doi: 10.1121/1.405426. DOI
Tasnádi F., Abrikosov I.A., Rogström L., Almer J., Johansson M.P., Odén M. Significant elastic anisotropy in Ti1−xAlxN alloys. Appl. Phys. Lett. 2010;97:231902. doi: 10.1063/1.3524502. DOI
Saha B., Sands T.D., Waghmare U.V. Electronic structure, vibrational spectrum, and thermal properties of yttrium nitride: A first-principles study. J. Appl. Phys. 2011;109:073720. doi: 10.1063/1.3561499. DOI
Yang J.W., An L. Ab initio calculation of the electronic, mechanical, and thermodynamic properties of yttrium nitride with the rocksalt structure. Phys. Status Solidi (b) 2014;251:792–802. doi: 10.1002/pssb.201350064. DOI
Mancera L., Rodriguez J.A., Takeuchi N. Theoretical study of the stability of wurtzite, zinc-blende, NaCl and CsCl phases in group IIIB and IIIA nitrides. Phys. Status Solidi (b) 2004;241:2424–2428. doi: 10.1002/pssb.200404910. DOI
Zerroug S., Ali Sahraoui F., Bouarissa N. Ab initio calculations of yttrium nitride: Structural and electronic properties. Appl. Phys. A. 2009;97:345–350. doi: 10.1007/s00339-009-5243-x. DOI
Stampfl C., Mannstadt W., Asahi R., Freeman A.J. Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys. Rev. B. 2001;63:155106. doi: 10.1103/PhysRevB.63.155106. DOI
Liu Z.T.Y., Zhou X., Khare S.V., Gall D. Structural, mechanical and electronic properties of 3d transition metal nitrides in cubic zincblende, rocksalt and cesium chloride structures: A first-principles investigation. J. Phys. Condens. Matter. 2014;26:025404. doi: 10.1088/0953-8984/26/2/025404. PubMed DOI
Mattesini M., Magnuson M., Tasnádi F., Höglund C., Abrikosov I.A., Hultman L. Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites: A first-principles study. Phys. Rev. B. 2009;79:125122. doi: 10.1103/PhysRevB.79.125122. DOI
Hohenberg P., Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Kresse G., Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Blöchl P.E. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI
Holec D., Friák M., Neugebauer J., Mayrhofer P.H. Trends in the elastic response of binary early transition metal nitrides. Phys. Rev. B. 2012;85:064101. doi: 10.1103/PhysRevB.85.064101. DOI
Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI
Zhou L., Holec D., Mayrhofer P.H. First-principles study of elastic properties of Cr-Al-N. J. Appl. Phys. 2013;113:043511. doi: 10.1063/1.4789378. DOI
Togo A., Tanaka I. First principles phonon calculations in materials science. Scr. Mater. 2015;108:1–5. doi: 10.1016/j.scriptamat.2015.07.021. DOI
Mancera L., Rodríguez J.A., Takeuchi N. First principles calculations of the ground state properties and structural phase transformation in YN. J. Phys. Condens. Matter. 2003;15:2625. doi: 10.1088/0953-8984/15/17/316. DOI
Pearson’s Handbook of Crystallographic Data for Intermetallic Phases. American Society for Metals; Metals Park, OH, USA: 1985.
Brik M., Ma C.G. First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Sc, Ti, V, Cr, Zr, Nb) Comput. Mater. Sci. 2012;51:380–388. doi: 10.1016/j.commatsci.2011.08.008. DOI
Gall D., Petrov I., Hellgren N., Hultman L., Sundgren J.E., Greene J.E. Growth of poly- and single-crystal ScN on MgO(001): Role of low-energy DOI
Birch F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947;71:809. doi: 10.1103/PhysRev.71.809. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Titrian H., Aydin U., Friák M., Ma D., Raabe D., Neugebauer J. Self-consistent Scale-bridging Approach to Compute the Elasticity of Multi-phase Polycrystalline Materials. MRS Proc. 2013;1524:mrsf12-1524-rr06-03. doi: 10.1557/opl.2013.41. DOI
Friák M., Counts W., Ma D., Sander B., Holec D., Raabe D., Neugebauer J. Theory-Guided Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties. Materials. 2012;5:1853–1872. doi: 10.3390/ma5101853. DOI
Zhu L.F., Friák M., Lymperakis L., Titrian H., Aydin U., Janus A., Fabritius H.O., Ziegler A., Nikolov S., Hemzalová P., Raabe D., Neugebauer J. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals. J. Mech. Behav. Biomed. Mater. 2013;20:296–304. doi: 10.1016/j.jmbbm.2013.01.030. PubMed DOI
Mayrhofer P.H., Fischer F.D., Boehm H.J., Mitterer C., Schneider J.M. Energetic balance and kinetics for the decomposition of supersaturated Ti1-xAlxN. Acta Mater. 2007;55:1441–1446. doi: 10.1016/j.actamat.2006.09.045. DOI
Wu L., Chen M., Li C., Zhou J., Shen L., Wang Y., Zhong Z., Feng M., Zhang Y., Han K., et al. Ferromagnetism and matrix-dependent charge transfer in strained LaMnO3-LaCoO3 superlattices. Mater. Res. Lett. 2018;6:501–507. doi: 10.1080/21663831.2018.1482840. DOI
Koutná N., Holec D., Friák M., Mayrhofer P.H., Šob M. Stability and elasticity of metastable solid solutions and superlattices in the MoN–TaN system: First-principles calculations. Mater. Des. 2018;144:310–322. doi: 10.1016/j.matdes.2018.02.033. DOI
Jiang M., Xiao H.Y., Peng S.M., Yang G.X., Liu Z.J., Zu X.T. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-20155-0. PubMed DOI PMC
Wen Y.N., Gao P.F., Xia M.G., Zhang S.L. Half-metallic ferromagnetism prediction in MoS2-based two-dimensional superlattice from first-principles. Mod. Phys. Lett. B. 2018;32 doi: 10.1142/S0217984918500987. DOI
Friák M., Tytko D., Holec D., Choi P.P., Eisenlohr P., Raabe D., Neugebauer J. Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. New J. Phys. 2015;17:093004. doi: 10.1088/1367-2630/17/9/093004. DOI
Dai Q., Eckern U., Schwingenschlog U. Effects of oxygen vacancies on the electronic structure of the (LaVO3)6/SrVO3 superlattice: A computational study. New J. Phys. 2018;20 doi: 10.1088/1367-2630/aac486. DOI
Jiang M., Xiao H., Peng S., Qiao L., Yang G., Liu Z., Zu X. First-Principles Study of Point Defects in GaAs/AlAs Superlattice: the Phase Stability and the Effects on the Band Structure and Carrier Mobility. Nanoscale Res. Lett. 2018;13 doi: 10.1186/s11671-018-2719-7. PubMed DOI PMC
Chen H., Millis A.J., Marianetti C.A. Engineering Correlation Effects via Artificially Designed Oxide Superlattices. Phys. Rev. Lett. 2013;111 doi: 10.1103/PhysRevLett.111.116403. PubMed DOI
Mottura A., Janotti A., Pollock T.M. A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L12-Co3(Al,W) Intermetallics. 2012;28:138–143. doi: 10.1016/j.intermet.2012.04.020. DOI
Rosengaard N., Skriver H. Ab-initio study of antiphase boundaries and stacking-faults in L12 and D022 compounds. Phys. Rev. B. 1994;50:4848–4858. doi: 10.1103/PhysRevB.50.4848. PubMed DOI
Torres-Pardo A., Gloter A., Zubko P., Jecklin N., Lichtensteiger C., Colliex C., Triscone J.M., Stephan O. Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale. Phys. Rev. B. 2011;84 doi: 10.1103/PhysRevB.84.220102. DOI
Chawla V., Holec D., Mayrhofer P.H. Stabilization criteria for cubic AlN in TiN/AlN and CrN/AlN bi-layer systems. J. Phys. D Appl. Phys. 2013;46 doi: 10.1088/0022-3727/46/4/045305. DOI
Cooper V.R., Rabe K.M. Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices. Phys. Rev. B. 2009;79 doi: 10.1103/PhysRevB.79.180101. DOI
Chen B., Zhang Q., Bernholc J. Si diffusion in gaas and si-induced interdiffusion in gaas/alas superlattices. Phys. Rev. B. 1994;49:2985–2988. doi: 10.1103/PhysRevB.49.2985. PubMed DOI
Schmid U., Christensen N., Cardona M., Lukes F., Ploog K. Optical anisotropy in GaAs/AlSs(110) superlattices. Phys. Rev. B. 1992;45:3546–3551. doi: 10.1103/PhysRevB.45.3546. PubMed DOI
Gibson Q.D., Schoop L.M., Weber A.P., Ji H., Nadj-Perge S., Drozdov I.K., Beidenkopf H., Sadowski J.T., Fedorov A., Yazdani A., et al. Termination-dependent topological surface states of the natural superlattice phase Bi4Se3. Phys. Rev. B. 2013;88 doi: 10.1103/PhysRevB.88.081108. DOI
Park C., Chang K. Structural and electronic-properties of gap-alp (001) superlattices. Phys. Rev. B. 1993;47:12709–12715. doi: 10.1103/PhysRevB.47.12709. PubMed DOI
Romanyuk O., Hannappel T., Grosse F. Atomic and electronic structure of GaP/Si(111), GaP/Si(110), and GaP/Si(113) interfaces and superlattices studied by density functional theory. Phys. Rev. B. 2013;88 doi: 10.1103/PhysRevB.88.115312. DOI
Abdulsattar M.A. SiGe superlattice nanocrystal pure and doped with substitutional phosphorus single atom: Density functional theory study. Superlattices Microstruct. 2011;50:377–385. doi: 10.1016/j.spmi.2011.07.017. DOI
Botti S., Vast N., Reining L., Olevano V., Andreani L. Ab initio and semiempirical dielectric response of superlattices. Phys. Rev. B. 2004;70 doi: 10.1103/PhysRevB.70.045301. PubMed DOI
Rondinelli J.M., Spaldin N.A. Electron-lattice instabilities suppress cuprate-like electronic structures in SrFeO3/OSrTiO3 superlattices. Phys. Rev. B. 2010;81 doi: 10.1103/PhysRevB.81.085109. DOI
Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI