• This record comes from PubMed

The Unique Mechanisms of Cellular Proliferation, Migration and Apoptosis are Regulated through Oocyte Maturational Development-A Complete Transcriptomic and Histochemical Study

. 2018 Dec 26 ; 20 (1) : . [epub] 20181226

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
UMO-2016/21/B/NZ9/03535 Narodowe Centrum Nauki

The growth and development of oocyte affect the functional activities of the surrounding somatic cells. These cells are regulated by various types of hormones, proteins, metabolites, and regulatory molecules through gap communication, ultimately leading to the development and maturation of oocytes. The close association between somatic cells and oocytes, which together form the cumulus-oocyte complexes (COCs), and their bi-directional communication are crucial for the acquisition of developmental competences by the oocyte. In this study, oocytes were extracted from the ovaries obtained from crossbred landrace gilts and subjected to in vitro maturation. RNA isolated from those oocytes was used for the subsequent microarray analysis. The data obtained shows, for the first time, variable levels of gene expression (fold changes higher than |2| and adjusted p-value < 0.05) belonging to four ontological groups: regulation of cell proliferation (GO:0042127), regulation of cell migration (GO:0030334), and regulation of programmed cell death (GO:0043067) that can be used together as proliferation, migration or apoptosis markers. We have identified several genes of porcine oocytes (ID2, VEGFA, BTG2, ESR1, CCND2, EDNRA, ANGPTL4, TGFBR3, GJA1, LAMA2, KIT, TPM1, VCP, GRID2, MEF2C, RPS3A, PLD1, BTG3, CD47, MITF), whose expression after in vitro maturation (IVM) is downregulated with different degrees. Our results may be helpful in further elucidating the molecular basis and functional significance of a number of gene markers associated with the processes of migration, proliferation and angiogenesis occurring in COCs.

See more in PubMed

Hunt P.A., Hassold T.J. Human female meiosis: What makes a good egg go bad? Trends Genet. 2008;24:86–93. doi: 10.1016/j.tig.2007.11.010. PubMed DOI

Viswanathan S.R., Mermel C.H., Lu J., Lu C.-W., Golub T.R., Daley G.Q. microRNA Expression during Trophectoderm Specification. PLoS ONE. 2009;4:e6143. doi: 10.1371/journal.pone.0006143. PubMed DOI PMC

Sinha P.B., Tesfaye D., Rings F., Hossien M., Hoelker M., Held E., Neuhoff C., Tholen E., Schellander K., Salilew-Wondim D. MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation. J. Ovarian Res. 2017;10:37. doi: 10.1186/s13048-017-0336-1. PubMed DOI PMC

Kempisty B., Ziółkowska A., Ciesiółka S., Piotrowska H., Antosik P., Bukowska D., Nowicki M., Brüssow K.P., Zabel M. Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells. J. Biol. Regul. Homeost. Agents. 2014;28:625–635. PubMed

Diaz F.J., Wigglesworth K., Eppig J.J. Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice. Dev. Biol. 2007;305:300–311. doi: 10.1016/j.ydbio.2007.02.019. PubMed DOI PMC

Rybska M., Knap S., Jankowski M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Cytoplasmic and nuclear maturation of oocytes in mammals–living in the shadow of cells developmental capability. Med. J. Cell Biol. 2018;6:13–17. doi: 10.2478/acb-2018-0003. DOI

Gilchrist R., Ritter L., Armstrong D. Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 2004;82–83:431–446. doi: 10.1016/j.anireprosci.2004.05.017. PubMed DOI

Li R., Norman R.J., Armstrong D.T., Gilchrist R.B. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol. Reprod. 2000;63:839–845. doi: 10.1095/biolreprod63.3.839. PubMed DOI

Macaulay A.D., Gilbert I., Caballero J., Barreto R., Fournier E., Tossou P., Sirard M.-A., Clarke H.J., Khandjian É.W., Richard F.J., et al. The Gametic Synapse: RNA Transfer to the Bovine Oocyte1. Biol. Reprod. 2014;91:90. doi: 10.1095/biolreprod.114.119867. PubMed DOI

Biase F.H., Kimble K.M. Functional signaling and gene regulatory networks between the oocyte and the surrounding cumulus cells. BMC Genomics. 2018;19:351. doi: 10.1186/s12864-018-4738-2. PubMed DOI PMC

Nawrocki M.J., Celichowski P., Budna J., Bryja A., Kranc W., Ciesiółka S., Borys S., Knap S., Jeseta M., Khozmi R., et al. The blood vessels development, morphogenesis and blood circulation are three ontologic groups highly up-regulated in porcine oocytes before in vitro maturation. Adv. Cell Biol. 2017;5:135–142. doi: 10.1515/acb-2017-0012. DOI

Budna J., Bryja A., Celichowski P., Kranc W., Ciesiółka S., Borys S., Rybska M., Kolecka-Bednarczyk A., Jeseta M., Bukowska D., et al. “Bone Development” Is an Ontology Group Upregulated in Porcine Oocytes Before In Vitro Maturation: A Microarray Approach. DNA Cell Biol. 2017;36:638–646. doi: 10.1089/dna.2017.3677. PubMed DOI

Kordus R.J., LaVoie H.A. Granulosa cell biomarkers to predict pregnancy in ART: Pieces to solve the puzzle. Reproduction. 2017;153:R69–R83. doi: 10.1530/REP-16-0500. PubMed DOI

Rybska M., Knap S., Jankowski M., Jeseta M., Bukowska D., Antosik P., Nowicki M., Zabel M., Kempisty B., Jaśkowski J.M. Characteristic of factors influencing the proper course of folliculogenesis in mammals. Med. J. Cell Biol. 2018;6:33–38. doi: 10.2478/acb-2018-0006. DOI

Barrett S.L., Albertini D.F. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J. Assist. Reprod. Genet. 2010;27:29–39. doi: 10.1007/s10815-009-9376-9. PubMed DOI PMC

Komatsu K., Masubuchi S. Mouse oocytes connect with granulosa cells by fusing with cell membranes and form a large complex during follicle development. Biol. Reprod. 2018;99:527–535. doi: 10.1093/biolre/ioy072. PubMed DOI PMC

Chachuła A., Kranc W., Budna J., Bryja A., Ciesiólka S., Wojtanowicz-Markiewicz K., Piotrowska H., Bukowska D., Krajecki M., Antosik P., et al. The differentiation of mammalian ovarian granulosa cells living in the shadow of cellular developmental capacity. J. Biol. Regul. Homeost. Agents. 2016;30:627–634. PubMed

Budna J., Celichowski P., Karimi P., Kranc W., Bryja A., Ciesiółka S., Rybska M., Borys S., Jeseta M., Bukowska D., et al. Does Porcine Oocytes Maturation in Vitro is Regulated by Genes Involved in Transforming Growth Factor B Receptor Signaling Pathway? Adv. Cell Biol. 2017;5:1–14. doi: 10.1515/acb-2017-0001. DOI

Hutt K.J., Albertini D.F. An oocentric view of folliculogenesis and embryogenesis. Reprod. Biomed. Online. 2007;14:758–764. doi: 10.1016/S1472-6483(10)60679-7. PubMed DOI

Dias F.C.F., Khan M.I.R., Sirard M.A., Adams G.P., Singh J. Transcriptome analysis of granulosa cells after conventional vs long FSH-induced superstimulation in cattle. BMC Genomics. 2018;19:258. doi: 10.1186/s12864-018-4642-9. PubMed DOI PMC

Zheng W., Liu K. Maternal Control of Mouse Preimplantation Development. Results Probl. Cell Differ. 2012;55:115–139. PubMed

Kranc W., Budna J., Chachuła A., Borys S., Bryja A., Rybska M., Ciesiółka S., Sumelka E., Jeseta M., Brüssow K.P., et al. “Cell Migration” Is the Ontology Group Differentially Expressed in Porcine Oocytes Before and After In Vitro Maturation: A Microarray Approach. DNA Cell Biol. 2017;36:273–282. doi: 10.1089/dna.2016.3425. PubMed DOI

Kempisty B., Ziółkowska A., Piotrowska H., Zawierucha P., Antosik P., Bukowska D., Ciesiółka S., Jaśkowski J.M., Brüssow K.P., Nowicki M., Zabel M. Real-time proliferation of porcine cumulus cells is related to the protein levels and cellular distribution of Cdk4 and Cx43. Theriogenology. 2013;80:411–420. doi: 10.1016/j.theriogenology.2013.05.016. PubMed DOI

Borup R., Thuesen L.L., Andersen C.Y., Nyboe-Andersen A., Ziebe S., Winther O., Grøndahl M.L. Competence Classification of Cumulus and Granulosa Cell Transcriptome in Embryos Matched by Morphology and Female Age. PLoS ONE. 2016;11:e0153562. doi: 10.1371/journal.pone.0153562. PubMed DOI PMC

Borys S., Khozmi R., Kranc W., Bryja A., Dyszkiewicz-Konwińska M., Jeseta M., Kempisty B. Recent findings of the types of programmed cell death. Adv. Cell Biol. 2017;5:43–49. doi: 10.1515/acb-2017-0004. DOI

Artini P.G., Tatone C., Sperduti S., D’Aurora M., Franchi S., Di Emidio G., Ciriminna R., Vento M., Di Pietro C., Stuppia L., et al. Cumulus cells surrounding oocytes with high developmental competence exhibit down-regulation of phosphoinositol 1, 3 kinase/protein kinase B (PI3K/AKT) signalling genes involved in proliferation and survival. Hum. Reprod. 2017;32:2474–2484. doi: 10.1093/humrep/dex320. PubMed DOI PMC

Massari M.E., Murre C. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 2000;20:429–440. doi: 10.1128/MCB.20.2.429-440.2000. PubMed DOI PMC

Budna J., Chachuła A., Kaźmierczak D., Rybska M., Ciesiółka S., Bryja A., Kranc W., Borys S., Żok A., Bukowska D., et al. Morphogenesis-related gene-expression profile in porcine oocytes before and after in vitro maturation. Zygote. 2017;25:331–340. doi: 10.1017/S096719941700020X. PubMed DOI

Guo L., Lan J., Lin Y., Guo P., Nie Q., Mao Q., Ren L., Qiu Y. Hypoxia/ischemia up-regulates Id2 expression in neuronal cells in vivo and in vitro. Neurosci. Lett. 2013;554:88–93. doi: 10.1016/j.neulet.2013.08.044. PubMed DOI

Hazzard T.M., Xu F., Stouffer R.L. Injection of soluble vascular endothelial growth factor receptor 1 into the preovulatory follicle disrupts ovulation and subsequent luteal function in rhesus monkeys. Biol. Reprod. 2002;67:1305–1312. doi: 10.1095/biolreprod67.4.1305. PubMed DOI

Trau H.A., Brännström M., Curry T.E., Duffy D.M. Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Hum. Reprod. 2016;31:dev320. doi: 10.1093/humrep/dev320. PubMed DOI PMC

Kranc W., Celichowski P., Budna J., Khozmi R., Bryja A., Ciesiółka S., Rybska M., Borys S., Jeseta M., Bukowska D., et al. Positive Regulation Of Macromolecule Metabolic Process Belongs To The Main Mechanisms Crucial For Porcine Ooocytes Maturation. Adv. Cell Biol. 2017;5:15–31. doi: 10.1515/acb-2017-0002. DOI

Anchordoquy J.M., Anchordoquy J.P., Testa J.A., Sirini M.Á., Furnus C.C. Influence of vascular endothelial growth factor and Cysteamine on in vitro bovine oocyte maturation and subsequent embryo development. Cell Biol. Int. 2015;39:1090–1098. doi: 10.1002/cbin.10481. PubMed DOI

Celichowski P., Nawrocki M.J.M.J., Dyszkiewicz-Konwińska M., Jankowski M., Budna J., Bryja A., Kranc W., Borys S., Knap S., Ciesiółka S., et al. “Positive Regulation of RNA Metabolic Process” Ontology Group Highly Regulated in Porcine Oocytes Matured In Vitro: A Microarray Approach. Biomed Res. Int. 2018;2018:1–10. doi: 10.1155/2018/2863068. PubMed DOI PMC

Tirone F. The gene PC3TIS21/BTG2, prototype member of the PC3/BTG/TOB family: Regulator in control of cell growth, differentiation, and DNA repair? J. Cell. Physiol. 2001;187:155–165. doi: 10.1002/jcp.1062. PubMed DOI

Goldenberg R.L., Vaitukaitis J.L., Ross G.T. Estrogen and Follicle Stimulating Hormone Interactions on Follicle Growth in Rats. Endocrinology. 1972;90:1492–1498. doi: 10.1210/endo-90-6-1492. PubMed DOI

Al-Edani T., Assou S., Ferrières A., Bringer Deutsch S., Gala A., Lecellier C.-H., Aït-Ahmed O., Hamamah S. Female aging alters expression of human cumulus cells genes that are essential for oocyte quality. Biomed Res. Int. 2014;2014:964614. doi: 10.1155/2014/964614. PubMed DOI PMC

Robker R.L., Richards J.S. Hormonal control of the cell cycle in ovarian cells: Proliferation versus differentiation. Biol. Reprod. 1998;59:476–482. doi: 10.1095/biolreprod59.3.476. PubMed DOI

Van Montfoort A.P.A., Geraedts J.P.M., Dumoulin J.C.M., Stassen A.P.M., Evers J.L.H., Ayoubi T.A.Y. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: A microarray analysis. Mol. Hum. Reprod. 2008;14:157–168. doi: 10.1093/molehr/gam088. PubMed DOI

Bigham A.W., Julian C.G., Wilson M.J., Vargas E., Browne V.A., Shriver M.D., Moore L.G. Maternal PRKAA1 and EDNRA genotypes are associated with birth weight, and PRKAA1 with uterine artery diameter and metabolic homeostasis at high altitude. Physiol. Genomics. 2014;46:687–697. doi: 10.1152/physiolgenomics.00063.2014. PubMed DOI PMC

Kawamura K., Ye Y., Liang C.G., Kawamura N., Gelpke M.S., Rauch R., Tanaka T., Hsueh A.J.W. Paracrine regulation of the resumption of oocyte meiosis by endothelin-1. Dev. Biol. 2009;327:62–70. doi: 10.1016/j.ydbio.2008.11.033. PubMed DOI

Wang H.X., Tong D., El-Gehani F., Tekpetey F.R., Kidder G.M. Connexin expression and gap junctional coupling in human cumulus cells: Contribution to embryo quality. J. Cell. Mol. Med. 2009;13:972–984. doi: 10.1111/j.1582-4934.2008.00373.x. PubMed DOI PMC

Li S.-H., Lin M.-H., Hwu Y.-M., Lu C.-H., Yeh L.-Y., Chen Y.-J., Lee R.K.-K. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reprod. Biol. Endocrinol. 2015;13:93. doi: 10.1186/s12958-015-0091-3. PubMed DOI PMC

DeLaughter D.M., Clark C.R., Christodoulou D.C., Seidman C.E., Baldwin H.S., Seidman J.G., Barnett J.V. Transcriptional Profiling of Cultured, Embryonic Epicardial Cells Identifies Novel Genes and Signaling Pathways Regulated by TGFβR3 In Vitro. PLoS ONE. 2016;11:e0159710. doi: 10.1371/journal.pone.0159710. PubMed DOI PMC

Sharma S.M., Sif S., Ostrowski M.C., Sankar U. Defective co-activator recruitment in osteoclasts from microphthalmia-oak ridge mutant mice. J. Cell. Physiol. 2009;220:230–237. doi: 10.1002/jcp.21755. PubMed DOI PMC

Mathias M.D., Sockolosky J.T., Chang A.Y., Tan K.S., Liu C., Garcia K.C., Scheinberg D.A. CD47 blockade enhances therapeutic activity of TCR mimic antibodies to ultra-low density cancer epitopes. Leukemia. 2017;31:2254–2257. doi: 10.1038/leu.2017.223. PubMed DOI PMC

Lv C., Wang H., Tong Y., Yin H., Wang D., Yan Z., Liang Y., Wu D., Su Q. The function of BTG3 in colorectal cancer cells and its possible signaling pathway. J. Cancer Res. Clin. Oncol. 2018;144:295–308. doi: 10.1007/s00432-017-2561-9. PubMed DOI PMC

Garrido J.L., Wheeler D., Vega L.L., Friedman P.A., Romero G. Role of Phospholipase D in Parathyroid Hormone Type 1 Receptor Signaling and Trafficking. Mol. Endocrinol. 2009;23:2048–2059. doi: 10.1210/me.2008-0436. PubMed DOI PMC

Tang Y., He Y., Li C., Mu W., Zou Y., Liu C., Qian S., Zhang F., Pan J., Wang Y., et al. RPS3A positively regulates the mitochondrial function of human periaortic adipose tissue and is associated with coronary artery diseases. Cell Discov. 2018;4:52. doi: 10.1038/s41421-018-0041-2. PubMed DOI PMC

Ali Z., Zulfiqar S., Klar J., Wikström J., Ullah F., Khan A., Abdullah U., Baig S., Dahl N. Homozygous GRID2 missense mutation predicts a shift in the D-serine binding domain of GluD2 in a case with generalized brain atrophy and unusual clinical features. BMC Med. Genet. 2017;18:144. doi: 10.1186/s12881-017-0504-6. PubMed DOI PMC

Bastola P., Neums L., Schoenen F.J., Chien J. VCP inhibitors induce endoplasmic reticulum stress, cause cell cycle arrest, trigger caspase-mediated cell death and synergistically kill ovarian cancer cells in combination with Salubrinal. Mol. Oncol. 2016;10:1559–1574. doi: 10.1016/j.molonc.2016.09.005. PubMed DOI PMC

Roca J., Martinez E., Vazquez J.M., Lucas X. Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test. Reprod. Fertil. Dev. 1998;10:479–485. doi: 10.1071/RD98060. PubMed DOI

Nawrocki M.J., Budna J., Celichowski P., Khozmi R., Bryja A., Kranc W., Borys S., Ciesiółka S., Knap S., Jeseta M., et al. Analysis of fructose and mannose–regulatory peptides signaling pathway in porcine epithelial oviductal cells (OECs) primary cultured long-term in vitro. Adv. Cell Biol. 2017;5:129–135. doi: 10.1515/acb-2017-0011. DOI

Kranc W., Jankowski M., Budna J., Celichowski P., Khozmi R., Bryja A., Borys S., Dyszkiewicz-Konwińska M., Jeseta M., Magas M., et al. Amino acids metabolism and degradation is regulated during porcine oviductal epithelial cells (OECs) primary culture in vitro—A signaling pathways activation approach. Med. J. Cell Biol. 2018;6:18–26. doi: 10.2478/acb-2018-0004. DOI

Walter W., Sánchez-Cabo F., Ricote M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–2914. doi: 10.1093/bioinformatics/btv300. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Expression Profile of New Gene Markers Involved in Differentiation of Canine Adipose-Derived Stem Cells into Chondrocytes

. 2022 Sep 16 ; 13 (9) : . [epub] 20220916

Genes regulating hormone stimulus and response to protein signaling revealed differential expression pattern during porcine oocyte in vitro maturation, confirmed by lipid concentration

. 2020 Jul ; 154 (1) : 77-95. [epub] 20200318

Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging-A Study of New Molecular Markers

. 2020 May 21 ; 9 (5) : . [epub] 20200521

New markers for regulation of transcription and macromolecule metabolic process in porcine oocytes during in vitro maturation

. 2020 Mar ; 21 (3) : 1537-1551. [epub] 20200127

"Biological Adhesion" is a Significantly Regulated Molecular Process during Long-Term Primary In Vitro Culture of Oviductal Epithelial Cells (Oecs): A Transcriptomic and Proteomic Study

. 2019 Jul 10 ; 20 (14) : . [epub] 20190710

Transcriptomic Pattern of Genes Regulating Protein Response and Status of Mitochondrial Activity Are Related to Oocyte Maturational Competence-A Transcriptomic Study

. 2019 May 07 ; 20 (9) : . [epub] 20190507

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...