Production and Role of Hormones During Interaction of Fusarium Species With Maize (Zea mays L.) Seedlings
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30687345
PubMed Central
PMC6337686
DOI
10.3389/fpls.2018.01936
Knihovny.cz E-zdroje
- Klíčová slova
- Fusarium, auxin, cytokinin, gibberellin, host–pathogen interaction, mango malformation disease (MMD),
- Publikační typ
- časopisecké články MeSH
It has long been known that hormones affect the interaction of a phytopathogen with its host plant. The pathogen can cause changes in plant hormone homeostasis directly by affecting biosynthesis or metabolism in the plant or by synthesizing and secreting the hormone itself. We previously demonstrated that pathogenic fungi of the Fusarium species complex are able to produce three major types of hormones: auxins, cytokinins, and gibberellins. In this work, we explore changes in the levels of these hormones in maize and mango plant tissues infected with Fusarium. The ability to produce individual phytohormones varies significantly across Fusarium species and such differences likely impact host specificity inducing the unique responses noted in planta during infection. For example, the production of gibberellins by F. fujikuroi leads to elongated rice stalks and the suppression of gibberellin biosynthesis in plant tissue. Although all Fusarium species are able to synthesize auxin, sometimes by multiple pathways, the ratio of its free form and conjugates in infected tissue is affected more than the total amount produced. The recently characterized unique pathway for cytokinin de novo synthesis in Fusarium appears silenced or non-functional in all studied species during plant infection. Despite this, a large increase in cytokinin levels was detected in F. mangiferae infected plants, caused likely by the up-regulation of plant genes responsible for their biosynthesis. Thus, the accumulation of active cytokinins may contribute to mango malformation of the reproductive organs upon infection of mango trees. Together, our findings provide insight into the complex role fungal and plant derived hormones play in the fungal-plant interactions.
Department of Molecular Biology and Ecology of Plants Tel Aviv University Tel Aviv Israel
Functional Genomics and Bioinformatics Sopron University Sopron Hungary
Institute of Experimental Botany Czech Academy of Sciences Olomouc Czechia
Zobrazit více v PubMed
Ansari M. W., Rani V., Shukla A., Bains G., Pant R. C., Tuteja N. (2015). Mango ( PubMed DOI PMC
Ansari M. W., Shukla A., Pant R. C., Tuteja N. (2013). First evidence of ethylene production by PubMed DOI PMC
Bai G. H., Shaner G. (1996). Variation in DOI
Behr M., Motyka V., Weihmann F., Malbeck J., Deising H. B., Wirsel S. G. R. (2012). Remodeling of cytokinin metabolism at infection sites of PubMed DOI
Bielach A., Duclercq J., Marhavý P., Benková E. (2012). Genetic approach towards the identification of auxin-cytokinin crosstalk components involved in root development. PubMed DOI PMC
Bist L. D., Ram S. (1986). Effect of malformation on changes in endogenous gibberellins and cytokinins during floral development of mango. DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. PubMed DOI
Chanclud E., Kisiala A., Emery N. R. J., Chalvon V., Ducasse A., Romiti-Michel C., et al. (2016). Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PubMed DOI PMC
Christianson T. W., Sikorski R. S., Dante M., Shero J. H., Hieter P. (1992). Multifunctional yeast high-copy-number shuttle vectors. PubMed DOI
Darken M. A., Jensen A. L., Shu P. (1959). Production of gibberellic acid by fermentation. PubMed PMC
Dempsey D. A., Klessig D. F. (2012). SOS - too many signals for systemic acquired resistance? PubMed DOI
Di X., Takken F. L. W., Tintor N. (2016). How phytohormones shape interactions between plants and the soil-borne fungus PubMed DOI PMC
Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. (2011). Evolution of cytokinin biosynthesis and degradation. PubMed DOI
Frébort I., Šebela M., Galuszka P., Werner T., Schmülling T., Peè P. (2002). Cytokinin oxidase/cytokinin dehydrogenase assay: optimized procedures and applications. PubMed DOI
Freeman S., Shtienberg D., Maymon M., Levin A. G., Ploetz R. C. (2014). New insights into mango malformation disease epidemiology lead to a new integrated management strategy for subtropical environments. PubMed DOI
Fu J., Liu H., Li Y., Yu H., Li X., Xiao J., et al. (2011). Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. PubMed DOI PMC
Geissman T. A., Verbiscar A. J., Phinney B. O., Cragg G. (1966). Studies on the biosynthesis of gibberellins from (-)-kaurenoic acid in cultures of DOI
González-Lamothe R., El Oirdi M., Brisson N., Bouarab K. (2012). The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. PubMed DOI PMC
Gordon T. R. (2006). Pitch canker disease of pines. PubMed DOI
Hedden P., Sponsel V. (2015). A century of gibberellin research. PubMed DOI PMC
Hinsch J., Galuszka P., Tudzynski P. (2016). Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of PubMed DOI
Hinsch J., Vrabka J., Oeser B., Novák O., Galuszka P., Tudzynski P. (2015). De novo biosynthesis of cytokinins in the biotrophic fungus PubMed DOI
Jiang C.-J., Shimono M., Sugano S., Kojima M., Liu X., Inoue H., et al. (2013). Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. PubMed DOI
Jones B., Gunnerås S. A., Petersson S. V., Tarkowski P., Graham N., May S., et al. (2010). Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. PubMed DOI PMC
Kasahara H. (2015). Current aspects of auxin biosynthesis in plants. PubMed DOI
Kidd B. N., Kadoo N. Y., Dombrecht B., Tekeoglu M., Gardiner D. M., Thatcher L. F., et al. (2011). Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen PubMed DOI
Liu F., Wu J.-B., Zhan R.-L., Ou X.-C. (2016). Transcription profiling analysis of mango-fusarium mangiferae interaction. PubMed DOI PMC
Lomin S. N., Krivosheev D. M., Steklov M. Y., Arkhipov D. V., Osolodkin D. I., Schmülling T., et al. (2015). Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. PubMed DOI PMC
Ludwig-Müller J. (2011). Auxin conjugates: their role for plant development and in the evolution of land plants. PubMed DOI
Mańka M. (1980). Auxin and gibberellin-like substances synthesis by PubMed
Matic S., Gullino M. L., Spadaro D. (2017). The puzzle of bakanae disease through interactions between PubMed DOI
Morrison E. N., Emery R. J. N., Saville B. J. (2017). Fungal derived cytokinins are necessary for normal DOI
Nicholson R. I. D., van Staden J. (1988). Cytokinins and mango flower malformation. i. tentative identification of the complement in healthy and malformed inflorescences. DOI
Niehaus E.-M., Münsterkötter M., Proctor R. H., Brown D. W., Sharon A., Idan Y., et al. (2016). Comparative “Omics” of the PubMed DOI PMC
Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. (2012). Tissue-specific profiling of the PubMed DOI
O’Donnell K., Rooney A. P., Proctor R. H., Brown D. W., McCormick S. P., Ward T. J., et al. (2013). Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. PubMed DOI
Presello D. A., Botta G., Iglesias J., Eyhérabide G. H. (2008). Effect of disease severity on yield and grain fumonisin concentration of maize hybrids inoculated with DOI
Quazi S. A. J., Meon S., Jaafar H., Ahmad Z. A. B. M. (2015). The role of phytohormones in relation to bakanae disease development and symptoms expression. DOI
Reineke G., Heinze B., Schirawski J., Buettner H., Kahmann R., Basse C. W. (2008). Indole-3-acetic acid (IAA) biosynthesis in the smut fungus PubMed DOI PMC
Rittenberg D., Foster G. L. (1940). A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids.
Sánchez-López Á. M., Baslam M., De Diego N., Muñoz F. J., Bahaji A., Almagro G., et al. (2016). Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. PubMed DOI
Schmittgen T. D., Livak K. J. (2008). Analyzing real-time PCR data by the comparative PubMed DOI
Schumacher J. (2012). Tools for PubMed DOI
Staben C., Jensen B., Singer M., Pollock J., Schechtman M., Kinsey J., et al. (1989). Use of a bacterial Hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. DOI
Thakur M. S., Vyas K. M. (1983). Production of plant growth regulators by some PubMed DOI
Tsavkelova E., Oeser B., Oren-Young L., Israeli M., Sasson Y., Tudzynski B., et al. (2012). Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated PubMed DOI
Tudzynski B., Hölter K. (1998). Gibberellin biosynthetic pathway in PubMed DOI
Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. (2013). Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry. PubMed DOI
Van Staden J., Nicholson R. I. D. (1989). Cytokinins and mango flower malformation II. the cytokinin complement produced by DOI
Vyroubalová Š., Václavíková K., Turečková V., Novák O., Šmehilová M., Hluska T., et al. (2009). Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. PubMed DOI PMC
Werner T., Köllmer I., Bartrina I., Holst K., Schmülling T. (2006). New insights into the biology of cytokinin degradation. PubMed DOI
Werner T., Motyka V., Strnad M., Schmülling T. (2001). Regulation of plant growth by cytokinin. PubMed DOI PMC
Wiemann P., Sieber C. M. K., von Bargen K. W., Studt L., Niehaus E.-M., Espino J. J., et al. (2013). Deciphering the cryptic genome: genome-wide analyses of the rice pathogen PubMed DOI PMC