European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
30696948
PubMed Central
PMC6756035
DOI
10.1038/s41375-019-0378-z
PII: 10.1038/s41375-019-0378-z
Knihovny.cz E-zdroje
- MeSH
- akutní myeloidní leukemie genetika MeSH
- chronická myeloidní leukemie MeSH
- hematologické nádory genetika MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- lymfom genetika MeSH
- mikročipová analýza MeSH
- mnohočetný myelom genetika MeSH
- myelodysplastické syndromy MeSH
- pruhování chromozomů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cytogenomic investigations of haematological neoplasms, including chromosome banding analysis, fluorescence in situ hybridisation (FISH) and microarray analyses have become increasingly important in the clinical management of patients with haematological neoplasms. The widespread implementation of these techniques in genetic diagnostics has highlighted the need for guidance on the essential criteria to follow when providing cytogenomic testing, regardless of choice of methodology. These recommendations provide an updated, practical and easily available document that will assist laboratories in the choice of testing and methodology enabling them to operate within acceptable standards and maintain a quality service.
Department of Clinical Genetics Erasmus MC University medical center Rotterdam The Netherlands
Department of Cytogenetics Nottingham University Hospital Nottingham UK
GenQA John Radcliffe Hospital Oxford University Hospitals NHS Trust Oxford UK
Haematological Malignancy Diagnostic Service St James's University Hospital Leeds UK
Hematopathology Section Hospital Clinic Barcelona Spain
MLL Munich Leukemia Laboratory Munich Germany
Oncogénomique laboratory Hematology department Lausanne University Hospital Vaudois Switzerland
Oncology Cytogenetics Service The Christie NHS Foundation Trust Manchester UK
Viapath Genetics laboratories Guys Hospital London UK
West Midlands Regional Genetics Laboratory Birmingham Women's Hospital Birmingham UK
Zobrazit více v PubMed
Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2017.
Mitelman F, Johansson B, Mertens F. Mitelman database of chromosome aberrations and gene fusions in cancer. 2018. http://cgap.nci.nih.gov/Chromosomes/Mitelman
Hastings R, Howell R, Betts D, Porter S, Haferlach C, Dastugue N, et al. Guidelines and quality assurance for acquired cytogenetics. European cytogeneticists association newsletter No. 31. 2013. https://www.e-c-a.eu/en/NEWSLETTER.html.
ISCN: an international system for human cytogenomic nomenclature 2016. In: McGowan-Jordan J, Simons A, Schmid M, editors. Basel: S. Karger; 2016.
Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet. 2005;6:782–92. doi: 10.1038/nrg1692. PubMed DOI
ISO 15189:2012 Medical laboratories-requirements for quality and competence. https://iso.org/
European Leukaemia Network http://www.leukemia-net.org/content/home/index_eng.html
Cherry AM, Slovak ML, Campbell LJ, Chun K, Eclache V, Haase D, et al. Will a peripheral blood (PB) sample yield the same diagnostic and prognostic cytogenetic data as the concomitant bone marrow (BM) in myelodysplasia? Leuk Res. 2012;36:832–40. doi: 10.1016/j.leukres.2012.03.013. PubMed DOI
Nyla A Heerema. Cytogenetic analysis of hematologic malignant diseases. In: Marilyn S Arsham, Margaret J. Barch, Helen J. Lawce, editors. The AGT Cytogenetics Laboratory Manual. 4th ed. Hoboken, New Jersey:Wiley-Blackwell; 2017; p. 499–575.
Earle VL, Ross F, Fisher A, Strike P, Berrington S, Chiecchio L, et al. Haemopoietic growth factors significantly improve the mitotic index and chromosome quality in cytogenetic cultures of myeloid neoplasia. Genes Chromosomes Cancer. 2007;46:670–4. doi: 10.1002/gcc.20450. PubMed DOI
Haferlach C, Rieder H, Lillington DM, Dastugue N, Hagemeijer A, Harbott J, et al. Proposals for standardized protocols for cytogenetic analyses of acute leukemias, chronic lymphocytic leukemia, chronic myeloid leukemia, chronic myeloproliferative disorders, and myelodysplastic syndromes. Genes Chromosomes Cancer. 2007;46:494–9. doi: 10.1002/gcc.20433. PubMed DOI
Touw I, Pouwels K, van Agthoven T, van Gurp R, Budel L, Hoogerbrugge H, et al. Interleukin-7 is a growth factor of precursor B and T acute lmphoblastic leukemia. Blood. 1991;75:2097–101. PubMed
Decker T, Schneller F, Hipp S, Miething C, Jahn T, Duyster J, et al. Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk)4 and the cdk inhibitor p27. Leukemia. 2002;16:327–34. doi: 10.1038/sj.leu.2402389. PubMed DOI
Dicker F, Schnittger S, Haferlach T, Kern W, Schoch C. Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood. 2006;108:3152–60. doi: 10.1182/blood-2006-02-005322. PubMed DOI
Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgVH status and immunophenotyping. Leukemia. 2007;21:2442–51. doi: 10.1038/sj.leu.2404935. PubMed DOI
Heerema NA, Byrd JC, Dal Cin PS, Dell’ Aquila ML, Koduru PR, Aviram A, et al. Stimulation of chronic lymphocytic leukemia cells with CpG oligodeoxynucleotide gives consistent karyotypic results among laboratories: a CLL Research Consortium(CRC) Study. Cancer, Genet Cytogenet. 2010;203:134–40. doi: 10.1016/j.cancergencyto.2010.07.128. PubMed DOI PMC
Hook EB. Exclusion of chromosomal mosaicism: tables of 90%, 95% and 99% confidence limits and comments on use. Am J Hum Genet. 1977;29:94–97. PubMed PMC
Gozzetti A, Le Beau MM. Fluorescence in situ hybridization: uses and limitations. Semin Hematol. 2000;37:320–33. doi: 10.1016/S0037-1963(00)90013-1. PubMed DOI
Summersgil B, Clark J, Shipley J. Fluorescence and chromogenic in situ hybridization to detect genetic aberrations in formalin-fixed paraffin embedded material, including tissue microarrays. Nat Protoc. 2008;3:220–34. doi: 10.1038/nprot.2007.534. PubMed DOI
Tibiletti MG. Interphase FISH as a new tool in tumor pathology. Cytogenet Genome Res. 2007;118:229–36. doi: 10.1159/000108305. PubMed DOI
Tibiletti MG, Vanni R. FISH on Histological sections of solid tumours: ECA recommendations. ECA Newsletter No. 27, 2011. https://www.e-c-a.eu/en/NEWSLETTER.html.
Schoumans J, Suela J, Hastings R, Muehlematter D, Rack K, van den Berg E, et al. Guidelines for genomic array analysis in acquired haematological neoplastic disorders. Genes Chromosomes Cancer. 2016;55:480–91. doi: 10.1002/gcc.22350. PubMed DOI
Bolli N, Biancon G, Moarii M, Gimondi S, Li Y, de Philippis C, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32:2604–16. doi: 10.1038/s41375-018-0037-9. PubMed DOI PMC
Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia. Blood. 2013;122:872–84. doi: 10.1182/blood-2013-05-501569. PubMed DOI PMC
Baccarani M, Castagnetti F, Gugliotta G, Rosti G. A review of the European LeukemiaNet recommendations for the management of CML. Ann Hematol. 2015;94(Suppl 2):S141–7. doi: 10.1007/s00277-015-2322-2. PubMed DOI
Marin D, Milojkovic D, Olavarria E, Khorashad JS, de Lavallade H, Reid AG, et al. European LeukemiaNet criteria for failure or suboptimal response reliably identify patients with CML in early chronic phase treated with imatinib whose eventual outcome is poor. Blood. 2008;112:4437–44. doi: 10.1182/blood-2008-06-162388. PubMed DOI PMC
Fabarius A, Leitner A, Hochhaus A, Müller MC, Hanfstein B, Haferlach C, et al. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV. Blood. 2011;118:6760–8. doi: 10.1182/blood-2011-08-373902. PubMed DOI
Palandri F, Testoni N, Luatti S, Marzocchi G, Baldazzi C, Stacchini M, et al. Influence of additional cytogenetic abnormalities on the response and survival in late chronic phase chronic myeloid leukemia patients treated with imatinib: long-term results. Leuk Lymphoma. 2009;50:114–8. doi: 10.1080/10428190802492415. PubMed DOI
Cortes JE, Talpaz M, Giles F, O’Brien S, Rios MB, Shan J, et al. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood. 2003;101:3794–3800. doi: 10.1182/blood-2002-09-2790. PubMed DOI
Wang W, Cortes JE, Tang G, Khoury JD, Wang S, Bueso-Ramos CE, et al. Risk stratification of chromosomal abnormalities in chronic leukemia in the era of tyrosine kinase inhibitor therapy. Blood. 2016;127:2742–50. doi: 10.1182/blood-2016-01-690230. PubMed DOI PMC
Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27:6041–51. doi: 10.1200/JCO.2009.25.0779. PubMed DOI PMC
Gong JZ, Cook JR, Greiner TC, Hedvat C, Hill CE, Lim MS, et al. Laboratory practice guidelines for detecting and reporting JAK2 and MPL mutations in myeloproliferative neoplasms: a report of the association for molecular pathology. J Mol Diagn. 2013;15:733–44. doi: 10.1016/j.jmoldx.2013.07.002. PubMed DOI
Xia D, Hassejian RP. Molecular testing for JAK2, MPL, and CALR in myeloproliferative neoplasms. Am J Hematol. 2016;91:1277–80. doi: 10.1002/ajh.24578. PubMed DOI
Brecqueville M, Rey J, Devillier R, Guille A, Gillet R, Adélaide J, et al. Array comparative genomic hybridization and sequencing of 23 genes in 80 patients with myelofibrosis at chronic or acute phase. Haematologica. 2014;99:37–45. doi: 10.3324/haematol.2013.091454. PubMed DOI PMC
Caramazza D, Begna KH, Gangat N, Vaidya R, Siragusa S, Van Dyke DL, et al. Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients. Leukemia. 2011;25:82–88. doi: 10.1038/leu.2010.234. PubMed DOI PMC
Hussein K, Pardanani AD, Van Dyke DL, Hanson CA, Tefferi A. International Prognostic Scoring System–independent cytogenetic risk categorization in primary myelofibrosis. Blood. 2010;115:496–9. doi: 10.1182/blood-2009-08-240135. PubMed DOI
Tam CS, Abruzzo LV, Lin KI, Cortes J, Lynn A, Keating MJ, et al. The role of cytogenetic abnormalities as a prognostic marker in primary myelofibrosis: applicability at the time of diagnosis and later during disease course. Blood. 2009;113:4171–8. doi: 10.1182/blood-2008-09-178541. PubMed DOI PMC
Tefferi A, Nicolosi M, Mudireddy M, Lasho TL, Gangat N, Begna KH, et al. Revised cytogenetic risk stratification in primary myelofibrosis: analysis based on 1002 informative patients. Leukemia. 2018;32:1189–99. doi: 10.1038/s41375-018-0018-z. PubMed DOI PMC
Reilly JT, McMullin FM, Beer PA, Butt N, Conneally E, Duncombe A, et al. Guideline for the diagnosis and management of myelofibrosis. Br J Haematol. 2012;158:453–71. doi: 10.1111/j.1365-2141.2012.09179.x. PubMed DOI
Butt NM, Lambert J, Ali S, Beer PA, Cross NCP, Duncombe A, et al. Guideline for the investigation and management of eosinophilia. Br J Haematol. 2017;176:553–72. doi: 10.1111/bjh.14488. PubMed DOI
Malcovati L, Hellström-Lindberg E, Bowen D, Adès L, Cermak J, del Cañizo C, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122:2943–64. doi: 10.1182/blood-2013-03-492884. PubMed DOI PMC
Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65. doi: 10.1182/blood-2012-03-420489. PubMed DOI PMC
Schanz J, Tüchler H, Solé F, Mallo M, Luño E, Cervera J, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30:820–9. doi: 10.1200/JCO.2011.35.6394. PubMed DOI PMC
Katagiri T, Sato-Otsubo A, Kashiwase K, Morishima S, Sato Y, Mori Y, et al. Frequent loss of HLA alleles associated with copy number-neutral 6p LOH in acquired aplastic anemia. Blood. 2011;118:6601–9. doi: 10.1182/blood-2011-07-365189. PubMed DOI
Such E, Germing U, Malcovati L, Cervera J, Kuendgen A, Della Porta MG, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121:3005–15. doi: 10.1182/blood-2012-08-452938. PubMed DOI
Harrison CJ, Schwab C. Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia. Eur J Med Genet. 2016;59:162–5. doi: 10.1016/j.ejmg.2016.01.006. PubMed DOI
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47. doi: 10.1182/blood-2016-08-733196. PubMed DOI PMC
Grimwade D, Ivey A, Huntly BKJ. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2017;129:424–47. doi: 10.1182/blood-2016-08-733196. PubMed DOI PMC
Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in AML: determination of prognostic significance of rare recurring chromosomal abnormalities amongst 5635 younger adults treated in the UK MRC trials. Blood. 2010;116:354–65. doi: 10.1182/blood-2009-11-254441. PubMed DOI
Akiki S, Dyer SA, Grimwade D, Ivey A, Abou-Zeid N, Borrow J, et al. NUP98-NSD1 fusion in association with FLT3-ITD mutations identifies a prognostically relevant subgroup of pediatric acute myeloid leukemia patients suitable for monitoring by realtime quantitative PCR. Genes Chromosomes Cancer. 2013;52:1053–64. doi: 10.1002/gcc.22100. PubMed DOI
Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, Pratcorona M, Abbas S, Kuipers JE, et al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood. 2011;118:3645–56. doi: 10.1182/blood-2011-04-346643. PubMed DOI
Shiba N, Ichikawa H, Taki T, Park ML, Jo A, Mitani S, et al. NUP98-NSD1 gene fusion and its related gene expression signature are strongly associated with a poor prognosis in pediatric acute myeloid leukemia. Genes Chromosomes Cancer. 2013;52:683–93. PubMed
von Bergh AR, van Drunen E, van Wering ER, van Zutven LJ, Hainmann I, Lönnerholm G, et al. High incidence of t(7;12)(q36; p13) in infant AML but not infant ALL, with a dismal outcome and ectopic expression of HLXB9. Genes Chromosomes Cancer. 2006;45:731–9. doi: 10.1002/gcc.20335. PubMed DOI
Tosi S, Harbott J, Teigler-Schegel A, Haas OA, Pirc-Danoewinata H, Harrison CJ, et al. t(7;12)(q36; p13), a new recurrent translocation involving ETV6 in infant leukemia. Genes Chromosomes Cancer. 2000;29:325–32. doi: 10.1002/1098-2264(2000)9999:9999<::AID-GCC1039>3.0.CO;2-9. PubMed DOI
Gruber TA, Larson Gedman A, Zhang J, Koss CS, Marada S, Ta HQ, et al. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell. 2012;22:683–97. doi: 10.1016/j.ccr.2012.10.007. PubMed DOI PMC
Masetti R, Pigazzi M, Togni M, Astolfi A, Indio V, Manara E, et al. CBFA2T3-GLIS2 fusion transcript is a novel common fusion in pediatric, cytogenetically normal AML, not restricted to FAB M7 subgroup. Blood. 2013;121:3469–72. doi: 10.1182/blood-2012-11-469825. PubMed DOI
Harrison CJ, Haas O, Harbott J, Biondi A, Stanulla M, Trka J, et al. Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the Biology and Diagnosis Committee of the International Berlin-Frankfurt-Munster study group. Br J Haematol. 2010;151:132–14. doi: 10.1111/j.1365-2141.2010.08314.x. PubMed DOI
Moorman AV. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev. 2012;26:123–35. doi: 10.1016/j.blre.2012.01.001. PubMed DOI
Moorman AV, Ensor HM, Richards SM, Chilton L, Schwab C, Kinsey SE, et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol. 2010;11:429–38. doi: 10.1016/S1470-2045(10)70066-8. PubMed DOI
Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C. Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl_5):69–82. PubMed
Homfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–52. doi: 10.1038/ng.2532. PubMed DOI PMC
Moorman AV, Richards SM, Martineau M, Cheung KL, Robinson HM, Jalali GR, et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood. 2003;102:2756–62. doi: 10.1182/blood-2003-04-1128. PubMed DOI
Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome–like acute lymphoblastic leukemia. Blood. 2017;130:2064–72. doi: 10.1182/blood-2017-06-743252. PubMed DOI PMC
Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20:1496–510. doi: 10.1038/sj.leu.2404302. PubMed DOI
Heim S, Mitelman F. Cancer Cytogenetics. 4th Ed. UK: Wiley-Blackwell Press; 2015.
Stergianou K, Fox C, Russell NH. Fusion of NUP214 to ABL1 on amplified episomes in T-ALL--implications for treatment. Leukemia. 2005;19:1680–1. doi: 10.1038/sj.leu.2403877. PubMed DOI
Hagemeijer A, Graux C. ABL1 rearrangements in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2010;49:299–308. PubMed
Moorman AV, Schwab C, Ensor H, Russell LJ, Morrison H, Jones L, et al. IGH translocations, CRLF2 deregulation, and microdeletions in adolescents and adults with acute lymphoblastic leukemia. J Clin Oncol. 2012;30:3100–8. doi: 10.1200/JCO.2011.40.3907. PubMed DOI
Mullighan GC. Genomic profiling of B-progenitor acute lymphoblastic leukemia. Best Pract Res Clin Hematol. 2011;24:489–503. doi: 10.1016/j.beha.2011.09.004. PubMed DOI PMC
Mullighan GC. Genomic characterisation of childhood lymphoblastic leukemia. Semin Hematol. 2013;50:314–24. doi: 10.1053/j.seminhematol.2013.10.001. PubMed DOI PMC
Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131:2745–60. doi: 10.1182/blood-2017-09-806398. PubMed DOI
Furman R, Sharman J, Coutre S, Cheson B, Pagel J, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007. doi: 10.1056/NEJMoa1315226. PubMed DOI PMC
Byrd JC, Furman RR, Coutre SE, Burger JA, Blum KA, Coleman M, et al. Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125:2497–506. doi: 10.1182/blood-2014-10-606038. PubMed DOI PMC
Farooqui M, Valdez J, Martyr S, Aue G, Saba N, Niemann CU, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16:169–76. doi: 10.1016/S1470-2045(14)71182-9. PubMed DOI PMC
Malcikova J, Tausch E, Rossi D, Sutton LA, Soussi T, Zenz T, et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia - update on methodological approaches and results interpretation. Leukemia. 2018;32:1070–80. doi: 10.1038/s41375-017-0007-7. PubMed DOI PMC
Rosenquist R, Ghia P, Hadzidimitriou A, Sutton LA, Agathangelidis A, Baliakas P, et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations. Leukemia. 2017;31:1477–81. doi: 10.1038/leu.2017.125. PubMed DOI PMC
Ouillette P, Collins R, Shakhan S, Li J, Peres E, Kujawski L, et al. Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood. 2011;118:3051–61. doi: 10.1182/blood-2010-12-327858. PubMed DOI PMC
Schweighofer CD, Coombes KR, Majewski T, Barron LL, Lerner S, Sargent RL, et al. Genomic variation by whole-genome SNP mapping arrays predicts time-to-event outcome in patients with chronic lymphocytic leukemia: a comparison of CLL and HapMap genotypes. J Mol Diagn. 2013;15:196–209. doi: 10.1016/j.jmoldx.2012.09.006. PubMed DOI PMC
Herling CD, Klaumünzer M, Rocha CK, Altmüller J, Thiele H, Bahlo J, et al. Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood. 2016;128:395–404. doi: 10.1182/blood-2016-01-691550. PubMed DOI
Puiggros A, Collado R, Calasanz MJ, Ortega M, Ruiz-Xivillé N, Rivas-Delgado A, et al. Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of TP53/ATM FISH deletions. Oncotarget. 2017;8:54297–303. doi: 10.18632/oncotarget.17350. PubMed DOI PMC
Malek SN. The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia. Oncogene. 2013;32:2805–17. doi: 10.1038/onc.2012.411. PubMed DOI PMC
Sonneveld P, Avet-Loiseau H, Lonial S, Usami S, Siegel D, Anderson KC, et al. Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. Blood. 2016;127:2955–62. doi: 10.1182/blood-2016-01-631200. PubMed DOI PMC
Caers J, Garderet L, Kortüm KM, O’Dwyer ME, van de Donk NWCJ, Binder M, et al. European Myeloma Network recommendations on tools for the diagnosis and monitoring of multiple myeloma: what to use and when. Haematologica. 2018;103:1772–84. doi: 10.3324/haematol.2018.189159. PubMed DOI PMC
Boyd KD, Ross FM, Chiecchio L, Dagrada G, Konn ZJ, Tapper WJ, et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia. 2012;26:349–55. doi: 10.1038/leu.2011.204. PubMed DOI PMC
NICE guidelines Myeloma: diagnosis and management. National Institute for Health and Care Excellence. 2016. https://www.nice.org.uk/guidance/ng35. PubMed
Wuilleme S, Robillard N, Lodé L, Magrangeas F, Beris H, Harousseau JL, et al. Ploidy, as detected by fluorescence in situ hybridization, defines different subgroups in multiple myeloma. Leukemia. 2005;19:275–8. doi: 10.1038/sj.leu.2403586. PubMed DOI
Ross F, Avet-Loiseau H, Ameye G, Gutiérrez NC, Liebisch P, O’Connor S, et al. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica. 2012;97:1272–7. doi: 10.3324/haematol.2011.056176. PubMed DOI PMC
Parker A, Bain B, Devereux S, Gatter K, Jack A, Matutes E, et al. Best practice in lymphoma diagnosis and reporting. 2008. www.rcpath.org
WHO classification of tumours of haematopoietic and lymphoid tissues. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, et al. editors. 4th Ed. Lyon: IARC Press; 2008.
Claustres M, Kožich V, Dequeker E, Fowler B, Hehir-Kwa JY, Miller K, et al. European Society of Human Genetics. Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic) Eur J Hum Genet. 2014;22:160–70. doi: 10.1038/ejhg.2013.125. PubMed DOI PMC
Guttenbach M, Koschorz B, Bernthaler U, Grimm T, Schmid M. Sex chromosome loss and aging: in situ hybridisation studies on human interphase nuclei. Am J Hum Genet. 1995;57:1143–50. PubMed PMC
Wiktor A, Rybicki BA, Piao ZS, Shurafa M, Maeda K, et al. Cinical significance of Y loss in hematologic disease. Genes Chromosomes Cancer. 2000;27:11–16. doi: 10.1002/(SICI)1098-2264(200001)27:1<11::AID-GCC2>3.0.CO;2-I. PubMed DOI
Goswami RS, Liang CS, Beuso-Ramos CE, Hu S, Goswani C, Yon C, et al. Isolated+15 in bone marrow: disease- associated or a benign finding? Leuk Res. 2015;39:72–76. doi: 10.1016/j.leukres.2014.11.005. PubMed DOI