Donepezil + chromone + melatonin hybrids as promising agents for Alzheimer's disease therapy

. 2019 Dec ; 34 (1) : 479-489.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30712420

We describe herein the design, multicomponent synthesis and biological studies of new donepezil + chromone + melatonin hybrids as potential agents for Alzheimer's disease (AD) therapy. We have identified compound 14n as promising multitarget small molecule showing strong BuChE inhibition (IC50 = 11.90 ± 0.05 nM), moderate hAChE (IC50 = 1.73 ± 0.34 μM), hMAO A (IC50 = 2.78 ± 0.12 μM), and MAO B (IC50 = 21.29 ± 3.85 μM) inhibition, while keeping a strong antioxidant power (3.04 TE, ORAC test). Consequently, the results reported here support the development of new multitarget Donepezil + Chromone + Melatonin hybrids, such as compound 14n, as a potential drug for AD patients cure.

Zobrazit více v PubMed

Querfurth HW, LaFerla FM. Alzheimer’s Disease. N Engl J Med 2010;362:329–44. PubMed

Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408–14. PubMed

Tumiatti V, Minarini A, Bolognesi ML, et al. . Tacrine derivatives and Alzheimer's disease. Curr Med Chem 2010;17:1825–38. PubMed

Rosini M, Simoni E, Milelli A, et al. . Oxidative stress in Alzheimer’s disease: are we connecting the dots?. J Med Chem 2014;57:2821–31. PubMed

Bush AI. Drug development based on the metals hypothesis of Alzheimer's disease. J Alzheimers Dis JAD 2008;15:223–40. PubMed

Morphy R, Rankovic Z. Designing multiple ligands – medicinal chemistry strategies and challenges. Curr Pharm Des 2009;15:587–600. PubMed

Agis-Torres A, Sollhuber M, Fernandez M, Sanchez-Montero JM. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr Neuropharmacol 2014;12:2–36. PubMed PMC

Cavalli A, Bolognesi ML, Minarini A. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 2008;51:347–72. PubMed

León R, Garcia AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev 2013;33:139–89. PubMed

Oset-Gasque MJ, Marco-Contelles J. Alzheimer’s disease, the “one-molecule, one-target” paradigm, and the multitarget directed ligand approach. ACS Chem Neurosci 2018;9:401–3. PubMed

Ismaili L, Refouvelet B, Benchekroun M, et al. . Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease. Prog Neurobiol 2017;151:4–34. PubMed

Benchekroun M, Ismaili L, Pudlo M, et al. . Donepezil–ferulic acid hybrids as anti-Alzheimer drugs. Future Med Chem 2015;7:15–21. PubMed

Benchekroun M, Romero A, Egea J, et al. . The antioxidant additive approach for Alzheimer’s disease therapy: new ferulic (lipoic) acid plus melatonin modified tacrines as cholinesterases inhibitors, direct antioxidants, and nuclear factor (erythroid-derived 2)-like 2 activators. J Med Chem 2016;59:9967–73. PubMed

Ismaili L, do Carmo Carreiras M. Multicomponent reactions for multitargeted compounds for Alzheimer`s disease. Curr Top Med Chem 2018;17:3319–27. PubMed

Dömling A, Wang W, Wang K. Chemistry and biology of multicomponent reactions. Chem Rev 2012;112:3083–135. PubMed PMC

Akritopoulou-Zanze I. Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 2008;12:324–31. PubMed

Biggs-Houck JE, Younai A, Shaw JT. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr Opin Chem Biol 2010;14:371–82. PubMed

Keri RS, Budagumpi S, Pai RK, Balakrishna RG. Chromones as a privileged scaffold in drug discovery: a review. Eur J Med Chem 2014;78:340–74. PubMed

Gaspar A, Reis J, Fonseca A, et al. . Chromone 3-phenylcarboxamides as potent and selective MAO-B inhibitors. Bioorg Med Chem Lett 2011;21:707–9. PubMed

Legoabe LJ, Petzer A, Petzer JP. Selected chromone derivatives as inhibitors of monoamine oxidase. Bioorg Med Chem Lett 2012;22:5480–4. PubMed

Bolasco A, Fioravanti R, Carradori S. Recent development of monoamine oxidase inhibitors. Expert Opin Ther Pat 2005;15:1763–82. PubMed

Song M-S, Matveychuk D, MacKenzie EM, et al. . An update on amine oxidase inhibitors: multifaceted drugs. Prog Neuropsychopharmacol Biol Psychiatry 2013;44:118–24. PubMed

Finberg JPM. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther 2014;143:133–52. PubMed

Li F, Wang Z-M, Wu J-J, et al. . Synthesis and pharmacological evaluation of donepezil-based agents as new cholinesterase/monoamine oxidase inhibitors for the potential application against Alzheimer’s disease. J Enzyme Inhib Med Chem 2016;31:41–53. PubMed

Zhang H-M, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 2014;57:131–46. PubMed

Zavodnik IB, Domanski AV, Lapshina EA, et al. . Melatonin directly scavenges free radicals generated in red blood cells and a cell-free system: chemiluminescence measurements and theoretical calculations. Life Sci 2006;79:391–400. PubMed

Manchester LC, Coto-Montes A, Boga JA, et al. . Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 2015;59:403–19. PubMed

Masilamoni JG, Jesudason EP, Dhandayuthapani S, et al. . The neuroprotective role of melatonin against amyloid β peptide injected mice. Free Radic Res 2008;42:661–73. PubMed

Viegas-Junior C, Danuello A, da Silva Bolzani V, et al. . Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 2007;14:1829–52. PubMed

Dávalos A, Gómez-Cordovés C, Bartolomé B. Extending applicability of the oxygen radical absorbance capacity (orac − fluorescein) assay. J Agric Food Chem 2004;52:48–54. PubMed

Dgachi Y, Bautista-Aguilera OM, Benchekroun M, et al. . Synthesis and biological evaluation of benzochromenopyrimidinones as cholinesterase inhibitors and potent antioxidant, non-hepatotoxic agents for Alzheimer’s disease. Molecules 2016;21:634. PubMed PMC

Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95. PubMed

Esquivias-Pérez M, Maalej E, Romero A, et al. . Nontoxic and neuroprotective β-naphthotacrines for Alzheimer’s disease. Chem Res Toxicol 2013;26:986–92. PubMed

Brooks BR, Bruccoleri RE, Olafson BD, et al. . CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 1983;4:187–217.

Morreale A, Maseras F, Iriepa I, Gálvez E. Ligand-receptor interaction at the neural nicotinic acetylcholine binding site: a theoretical model. J Mol Graph Model 2002;21:111–8. PubMed

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61. PubMed PMC

Benchekroun M, Bartolini M, Egea J, et al. . Novel tacrine-grafted ugi adducts as multipotent anti-alzheimer drugs: a synthetic renewal in tacrine-ferulic acid hybrids. ChemMedChem 2015;10:523–39. PubMed

Choi JY, Calvet CM, Gunatilleke SS, et al. . Rational development of 4-aminopyridyl-based inhibitors targeting trypanosoma cruzi cyp51 as anti-chagas agents. J Med Chem 2013;56:7651–68. PubMed PMC

Bolea I, Juárez-Jiménez J, de los Ríos C, et al. . Synthesis, biological evaluation, and molecular modeling of donepezil and N-[(5-(Benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine hybrids as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease. J Med Chem 2011;54:8251–70. PubMed

Mandelli GR, Maiorana S, Terni P, et al. . Synthesis of new cardioselective M2 muscarinic receptor antagonists. Chem Pharm Bull (Tokyo) 2000;48:1611–22. PubMed

Ou B, Hampsch-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 2001;49:4619–26. PubMed

Edmondson DE, Mattevi A, Binda C, et al. . Structure and mechanism of monoamine oxidase. Curr Med Chem 2004;11:1983–93. PubMed

Jones TZ, Balsa D, Unzeta M, Ramsay RR. Variations in activity and inhibition with pH: the protonated amine is the substrate for monoamine oxidase, but uncharged inhibitors bind better. J Neural Transm Vienna Austria 2007;114:707–12. PubMed

Wang J, Edmondson DE. 2H kinetic isotope effects and pH dependence of catalysis as mechanistic probes of rat monoamine oxidase a: comparisons with the human enzyme. Biochemistry 2011;50:7710–7. PubMed PMC

Scherrer RA, Leo AJ. Multi-pH QSAR: a method to differentiate the activity of neutral and ionized species and obtain true correlations when both species are involved. Mol Inform 2010;29:687–93. PubMed

Samadi A, de los Ríos C, Bolea I, et al. . Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer’s disease: Synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine. Eur J Med Chem 2012;52:251–62. PubMed

Wang L, Esteban G, Ojima M, et al. . Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer’s disease. Eur J Med Chem 2014;80:543–61. PubMed

Bautista-Aguilera OM, Esteban G, Bolea I, et al. . Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil-indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer’s disease. Eur J Med Chem 2014;75:82–95. PubMed

Arendt T, Brückner MK, Lange M, Bigl V. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer's disease resemble embryonic development-a study of molecular forms. Neurochem Int 1992;21:381–96. PubMed

Darvesh S, Hopkins DA, Geula C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 2003;4:131–8. PubMed

Greig NH, Utsuki T, Ingram DK, et al. . Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci USA 2005;102:17213–8. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...