Synthesis and Biological Evaluation of Benzochromenopyrimidinones as Cholinesterase Inhibitors and Potent Antioxidant, Non-Hepatotoxic Agents for Alzheimer's Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27187348
PubMed Central
PMC6273488
DOI
10.3390/molecules21050634
PII: molecules21050634
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, antioxidants, cholinesterase inhibitors, hepatotoxicity, multicomponent reactions, multitarget-directed ligands, quinazolinones,
- MeSH
- Alzheimerova nemoc prevence a kontrola MeSH
- antioxidancia chemická syntéza farmakologie MeSH
- cholinesterasové inhibitory chemická syntéza farmakologie MeSH
- inhibiční koncentrace 50 MeSH
- játra účinky léků MeSH
- lidé MeSH
- spektrální analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- cholinesterasové inhibitory MeSH
We report herein the straightforward two-step synthesis and biological assessment of novel racemic benzochromenopyrimidinones as non-hepatotoxic, acetylcholinesterase inhibitors with antioxidative properties. Among them, compound 3Bb displayed a mixed-type inhibition of human acetylcholinesterase (IC50 = 1.28 ± 0.03 μM), good antioxidant activity, and also proved to be non-hepatotoxic on human HepG2 cell line.
Biomedical Research Center University Hospital Hradec Kralove 500 05 Hradec Králove Czech Republic
Faculty of Pharmacy University of Ljubljana Aškerčeva 7 Ljubljana 1000 Slovenia
Laboratory of Medicinal Chemistry C Juan de la Cierva 3 Madrid 28006 Spain
Zobrazit více v PubMed
World Alzheimer Report 2015. [(accessed on 3 February 2016)]. Available online: http://www.worldalzreport2015.org/
Liu L., Luo S., Zeng L., Wang W., Yuan L., Jian X. Degenerative alterations in noradrenergic neurons of the locus coeruleus in Alzheimer’s disease. Neural Regen. Res. 2013;8:2249–2255. PubMed PMC
Mesulam M.-M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J. Comp. Neurol. 2013;521:4124–4144. doi: 10.1002/cne.23415. PubMed DOI PMC
Zarow C., Lyness S.A., Mortimer J.A., Chui H.C. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in alzheimer and parkinson diseases. Arch. Neurol. 2003;60:337–341. PubMed
Praticò D., Sung S. Lipid peroxidation and oxidative imbalance: Early functional events in Alzheimer’s disease. J. Alzheimers Dis. JAD. 2004;6:171–175. PubMed
Yan M.H., Wang X., Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 2013;62:90–101. doi: 10.1016/j.freeradbiomed.2012.11.014. PubMed DOI PMC
Greenough M.A., Camakaris J., Bush A.I. Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem. Int. 2013;62:540–555. doi: 10.1016/j.neuint.2012.08.014. PubMed DOI
Candore G., Bulati M., Caruso C., Castiglia L., Colonna-Romano G., di Bona D., Duro G., Lio D., Matranga D., Pellicanò M., et al. Inflammation, cytokines, immune response, apolipoprotein E, cholesterol, and oxidative stress in Alzheimer disease: Therapeutic implications. Rejuvenation Res. 2010;13:301–313. doi: 10.1089/rej.2009.0993. PubMed DOI
Bond M., Rogers G., Peters J., Anderson R., Hoyle M., Miners A., Moxham T., Davis S., Thokala P., Wailoo A., et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): A systematic review and economic model. Health Technol. Assess. 2012;16 doi: 10.3310/hta16210. PubMed DOI PMC
Wilkinson D., Wirth Y., Goebel C. Memantine in Patients with Moderate to Severe Alzheimer’s Disease: Meta-Analyses Using Realistic Definitions of Response. Dement. Geriatr. Cogn. Disord. 2014;37:71–85. doi: 10.1159/000353801. PubMed DOI
Watkins P.B., Zimmerman H.J., Knapp M.J., Gracon S.I., Lewis K.W. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA. 1994;271:992–998. doi: 10.1001/jama.1994.03510370044030. PubMed DOI
Bolea I., Juárez-Jiménez J., de los Ríos C., Chioua M., Pouplana R., Luque F.J., Unzeta M., Marco-Contelles J., Samadi A. Synthesis, Biological Evaluation, and Molecular Modeling of Donepezil and N-[(5-(Benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine Hybrids as New Multipotent Cholinesterase/Monoamine Oxidase Inhibitors for the Treatment of Alzheimer’s Disease. J. Med. Chem. 2011;54:8251–8270. PubMed
Samadi A., Chioua M., Bolea I., de los Ríos C., Iriepa I., Moraleda I., Bastida A., Esteban G., Unzeta M., Gálvez E., et al. Synthesis, biological assessment and molecular modeling of new multipotent MAO and cholinesterase inhibitors as potential drugs for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2011;46:4665–4668. doi: 10.1016/j.ejmech.2011.05.048. PubMed DOI
Ismaili L., Refouvelet B., Benchekroun M., Brogi S., Brindisi M., Gemma S., Campiani G., Filipic S., Agbaba D., Esteban G., et al. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease. Prog. Neurobiol. 2016 doi: 10.1016/j.pneurobio.2015.12.003. PubMed DOI
Decker M. Novel inhibitors of acetyl- and butyrylcholinesterase derived from the alkaloids dehydroevodiamine and rutaecarpine. Eur. J. Med. Chem. 2005;40:305–313. doi: 10.1016/j.ejmech.2004.12.003. PubMed DOI
Huang G., Kling B., Darras F.H., Heilmann J., Decker M. Identification of a neuroprotective and selective butyrylcholinesterase inhibitor derived from the natural alkaloid evodiamine. Eur. J. Med. Chem. 2014;81:15–21. doi: 10.1016/j.ejmech.2014.05.002. PubMed DOI
Darras F.H., Wehle S., Huang G., Sotriffer C.A., Decker M. Amine substitution of quinazolinones leads to selective nanomolar AChE inhibitors with “inverted” binding mode. Bioorg. Med. Chem. 2014;22:4867–4881. doi: 10.1016/j.bmc.2014.06.045. PubMed DOI
Benchekroun M., Ismaili L., Pudlo M., Luzet V., Gharbi T., Refouvelet B., Marco-Contelles J. Donepezil–ferulic acid hybrids as anti-Alzheimer drugs. Future Med. Chem. 2015;7:15–21. doi: 10.4155/fmc.14.148. PubMed DOI
Benchekroun M., Bartolini M., Egea J., Romero A., Soriano E., Pudlo M., Luzet V., Andrisano V., Jimeno M.-L., López M.G., et al. Novel Tacrine-Grafted Ugi Adducts as Multipotent Anti-Alzheimer Drugs: A Synthetic Renewal in Tacrine-Ferulic Acid Hybrids. ChemMedChem. 2015;10:523–539. doi: 10.1002/cmdc.201402409. PubMed DOI
Ou B., Hampsch-Woodill M., Prior R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001;49:4619–4626. doi: 10.1021/jf010586o. PubMed DOI
Dávalos A., Gómez-Cordovés C., Bartolomé B. Extending Applicability of the Oxygen Radical Absorbance Capacity (ORAC−Fluorescein) Assay. J. Agric. Food Chem. 2004;52:48–54. doi: 10.1021/jf0305231. PubMed DOI
Fang L., Kraus B., Lehmann J., Heilmann J., Zhang Y., Decker M. Design and synthesis of tacrine–ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett. 2008;18:2905–2909. doi: 10.1016/j.bmcl.2008.03.073. PubMed DOI
Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Decker M., Krauth F., Lehmann J. Novel tricyclic quinazolinimines and related tetracyclic nitrogen bridgehead compounds as cholinesterase inhibitors with selectivity towards butyrylcholinesterase. Bioorg. Med. Chem. 2006;14:1966–1977. doi: 10.1016/j.bmc.2005.10.044. PubMed DOI
Esquivias-Pérez M., Maalej E., Romero A., Chabchoub F., Samadi A., Marco-Contelles J., Oset-Gasque M.J. Nontoxic and neuroprotective β-naphthotacrines for Alzheimer’s disease. Chem. Res. Toxicol. 2013;26:986–992. doi: 10.1021/tx400138s. PubMed DOI
Di L., Kerns E.H., Fan K., McConnell O.J., Carter G.T. High throughput artificial membrane permeability assay for blood–brain barrier. Eur. J. Med. Chem. 2003;38:223–232. doi: 10.1016/S0223-5234(03)00012-6. PubMed DOI
Lemes L.F.N., de Andrade Ramos G., de Oliveira A.S., da Silva F.M.R., de Castro Couto G., da Silva Boni M., Guimarães M.J.R., Souza I.N.O., Bartolini M., et al. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer’s disease. Eur. J. Med. Chem. 2016;108:687–700. doi: 10.1016/j.ejmech.2015.12.024. PubMed DOI
Cornish-Bowden A. A Simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors (Short Communication) Biochem. J. 1974;137:143–144. doi: 10.1042/bj1370143. PubMed DOI PMC
Silverman R.B. The Organic Chemistry of Enzyme-catalyzed Reactions. Academic Press; San Diego, CA, USA: 2000.
Sugano K., Hamada H., Machida M., Ushio H. High Throughput Prediction of Oral Absorption: Improvement of the Composition of the Lipid Solution Used in Parallel Artificial Membrane Permeation Assay. J. Biomol. Screen. 2001;6:189–196. doi: 10.1177/108705710100600309. PubMed DOI
Wohnsland F., Faller B. High-Throughput Permeability pH Profile and High-Throughput Alkane/Water log P with Artificial Membranes. J. Med. Chem. 2001;44:923–930. doi: 10.1021/jm001020e. PubMed DOI
Synthesis and biological assessment of KojoTacrines as new agents for Alzheimer's disease therapy
Donepezil + chromone + melatonin hybrids as promising agents for Alzheimer's disease therapy