Simple Fabrication of Structured Magnetic Metallic Nano-Platelets for Bio-Analytical Applications

. 2019 Feb 03 ; 10 (2) : . [epub] 20190203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30717443

Grantová podpora
16-09283Y Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_026/0008446 European Regional Development Fund-Project "SINGING PLANT"
CZ.02.1.01/0.0/0.0/17_048/0007421 OP RDE project "Strengthening interdisciplinary cooperation in research of nanomaterials and their effects on living organisms"

This short communication presents a simple method of preparation of thin-metal nano-platelets utilizing metal sputtering and lift-off photolithography. The method offers complete control over size, shape and properties of nano-platelets of sub-micrometer thickness. Platelets with a thickness of 50⁻200 nm and with defined arbitrary shapes and sizes in the range of 15⁻300 μm were prepared from single or multiple metal layers by magnetron sputtering. Deposition of different metals in layers enabled fabrication of bi- or tri-metallic platelets with a magnetic core and differently composed surfaces. Highly reflective nano-platelets with a magnetic core allowed manipulation by magnetic fields, while different metallic surfaces served for functionalization by selected molecules. Submicron thin nano-platelets are extremely light (e.g., ~20 ng for a 100 μm × 100 μm × 0.1 μm gold nano-platelet) so that they can be attached to surfaces by only a few chemical bonds. At the same time their area is sufficiently large for simple optical recognition of their shape which is intended to label various characteristics depending on the specific surface functionalization of the given shape.

Zobrazit více v PubMed

Sahil K., Akanksha M., Premjeet S., Bilandi A., Kapoor B. Microsphere: A review. IJRCP. 2011;1:1184–1198.

Rödiger S., Liebsch C., Schmidt C., Lehmann W., Resch-Genger U., Schedler U., Schierack P. Nucleic acid detection based on the use of microbeads: A review. Microchim. Acta. 2014;181:1151–1168. doi: 10.1007/s00604-014-1243-4. DOI

Gijs M.A.M. Magnetic bead handling on-chip: New opportunities for analytical applications. Microfluid Nanofluid. 2004;1:22–40. doi: 10.1007/s10404-004-0010-y. DOI

Wu W., He Q., Jiang C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008;3:397. doi: 10.1007/s11671-008-9174-9. PubMed DOI PMC

Wang S., Lu A., Zhang L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016;53:169–206. doi: 10.1016/j.progpolymsci.2015.07.003. DOI

Mulvaney S.P., Mattoussi H., Whitman L.J. Incorporating fluorescent dyes and quantum dots into magnetic microbeads for immunoassays. BioTechniques. 2004;36:602–609. doi: 10.2144/04364BI01. PubMed DOI

Fu X., Cai J., Zhang X., Li W.-D., Ge H., Hu Y. Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv. Drug Deliv. Rev. 2018;132:169–187. doi: 10.1016/j.addr.2018.07.006. PubMed DOI

Kim D.-H., Rozhkova E.A., Ulasov I.V., Bader S.D., Rajh T., Lesniak M.S., Novosad V. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 2010;9:165–171. doi: 10.1038/nmat2591. PubMed DOI PMC

Summary of Coefficient of Linear Expansion (CTE) of Metals—C-Therm—Thermal Conductivity Instruments. [(accessed on 7 January 2019)]; Available online: https://ctherm.com/resources/blog/summary_of_coefficient_of_linear_expansion_cte/

Jusková P., Neužil P., Manz A., Foret F. Detection of electrochemiluminescence from floating metal platelets in suspension. Lab Chip. 2013;13:781–784. doi: 10.1039/c2lc41086a. PubMed DOI

Florin E.L., Moy V.T., Gaub H.E. Adhesion forces between individual ligand-receptor pairs. Science. 1994;264:415–417. doi: 10.1126/science.8153628. PubMed DOI

D’Agata R., Palladino P., Spoto G. Streptavidin-coated gold nanoparticles: Critical role of oligonucleotides on stability and fractal aggregation. Beilstein J. Nanotechnol. 2017;8:1–11. doi: 10.3762/bjnano.8.1. PubMed DOI PMC

Voráčová I., Klepárník K., Lišková M., Foret F. Determination of ζ-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis. Electrophoresis. 2015;36:867–874. doi: 10.1002/elps.201400459. PubMed DOI

Jankovicova B., Rosnerova S., Slovakova M., Zverinova Z., Hubalek M., Hernychova L., Rehulka P., Viovy J.-L., Bilkova Z. Epitope mapping of allergen ovalbumin using biofunctionalized magnetic beads packed in microfluidic channels: The first step towards epitope-based vaccines. J. Chromatogr. A. 2008;1206:64–71. doi: 10.1016/j.chroma.2008.07.062. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...