Simple Fabrication of Structured Magnetic Metallic Nano-Platelets for Bio-Analytical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-09283Y
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_026/0008446
European Regional Development Fund-Project "SINGING PLANT"
CZ.02.1.01/0.0/0.0/17_048/0007421
OP RDE project "Strengthening interdisciplinary cooperation in research of nanomaterials and their effects on living organisms"
PubMed
30717443
PubMed Central
PMC6412862
DOI
10.3390/mi10020106
PII: mi10020106
Knihovny.cz E-zdroje
- Klíčová slova
- lithography, magnetic particles, micro-particles,
- Publikační typ
- časopisecké články MeSH
This short communication presents a simple method of preparation of thin-metal nano-platelets utilizing metal sputtering and lift-off photolithography. The method offers complete control over size, shape and properties of nano-platelets of sub-micrometer thickness. Platelets with a thickness of 50⁻200 nm and with defined arbitrary shapes and sizes in the range of 15⁻300 μm were prepared from single or multiple metal layers by magnetron sputtering. Deposition of different metals in layers enabled fabrication of bi- or tri-metallic platelets with a magnetic core and differently composed surfaces. Highly reflective nano-platelets with a magnetic core allowed manipulation by magnetic fields, while different metallic surfaces served for functionalization by selected molecules. Submicron thin nano-platelets are extremely light (e.g., ~20 ng for a 100 μm × 100 μm × 0.1 μm gold nano-platelet) so that they can be attached to surfaces by only a few chemical bonds. At the same time their area is sufficiently large for simple optical recognition of their shape which is intended to label various characteristics depending on the specific surface functionalization of the given shape.
Zobrazit více v PubMed
Sahil K., Akanksha M., Premjeet S., Bilandi A., Kapoor B. Microsphere: A review. IJRCP. 2011;1:1184–1198.
Rödiger S., Liebsch C., Schmidt C., Lehmann W., Resch-Genger U., Schedler U., Schierack P. Nucleic acid detection based on the use of microbeads: A review. Microchim. Acta. 2014;181:1151–1168. doi: 10.1007/s00604-014-1243-4. DOI
Gijs M.A.M. Magnetic bead handling on-chip: New opportunities for analytical applications. Microfluid Nanofluid. 2004;1:22–40. doi: 10.1007/s10404-004-0010-y. DOI
Wu W., He Q., Jiang C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008;3:397. doi: 10.1007/s11671-008-9174-9. PubMed DOI PMC
Wang S., Lu A., Zhang L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016;53:169–206. doi: 10.1016/j.progpolymsci.2015.07.003. DOI
Mulvaney S.P., Mattoussi H., Whitman L.J. Incorporating fluorescent dyes and quantum dots into magnetic microbeads for immunoassays. BioTechniques. 2004;36:602–609. doi: 10.2144/04364BI01. PubMed DOI
Fu X., Cai J., Zhang X., Li W.-D., Ge H., Hu Y. Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv. Drug Deliv. Rev. 2018;132:169–187. doi: 10.1016/j.addr.2018.07.006. PubMed DOI
Kim D.-H., Rozhkova E.A., Ulasov I.V., Bader S.D., Rajh T., Lesniak M.S., Novosad V. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 2010;9:165–171. doi: 10.1038/nmat2591. PubMed DOI PMC
Summary of Coefficient of Linear Expansion (CTE) of Metals—C-Therm—Thermal Conductivity Instruments. [(accessed on 7 January 2019)]; Available online: https://ctherm.com/resources/blog/summary_of_coefficient_of_linear_expansion_cte/
Jusková P., Neužil P., Manz A., Foret F. Detection of electrochemiluminescence from floating metal platelets in suspension. Lab Chip. 2013;13:781–784. doi: 10.1039/c2lc41086a. PubMed DOI
Florin E.L., Moy V.T., Gaub H.E. Adhesion forces between individual ligand-receptor pairs. Science. 1994;264:415–417. doi: 10.1126/science.8153628. PubMed DOI
D’Agata R., Palladino P., Spoto G. Streptavidin-coated gold nanoparticles: Critical role of oligonucleotides on stability and fractal aggregation. Beilstein J. Nanotechnol. 2017;8:1–11. doi: 10.3762/bjnano.8.1. PubMed DOI PMC
Voráčová I., Klepárník K., Lišková M., Foret F. Determination of ζ-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis. Electrophoresis. 2015;36:867–874. doi: 10.1002/elps.201400459. PubMed DOI
Jankovicova B., Rosnerova S., Slovakova M., Zverinova Z., Hubalek M., Hernychova L., Rehulka P., Viovy J.-L., Bilkova Z. Epitope mapping of allergen ovalbumin using biofunctionalized magnetic beads packed in microfluidic channels: The first step towards epitope-based vaccines. J. Chromatogr. A. 2008;1206:64–71. doi: 10.1016/j.chroma.2008.07.062. PubMed DOI