Peroxidase-like activity of magnetic poly(glycidyl methacrylate-co-ethylene dimethacrylate) particles
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30733466
PubMed Central
PMC6367401
DOI
10.1038/s41598-018-38012-5
PII: 10.1038/s41598-018-38012-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Poly(glycidyl methacrylate) (PGMA) is prone to modifications with different functional groups, magnetic fluids or direct coupling with biological molecules. The purpose of this research was to synthesize new magnetically responsive particles with peroxidase-like activity. Poly(glycidyl methacrylate-co-ethylene dimethacrylate) [P(GMA-EDMA)] particles containing carboxyl groups were obtained by emulsifier-free emulsion polymerization and hydrolysis and oxidation of PGMA with KMnO4, resulting in poly(carboxymethyl methacrylate-co-ethylene dimethacrylate) [P(CMMA-EDMA)] particles. Thionine (Th) was also attached to the particles [(P(CMMA-EDMA)-Th] via EDC/NHS chemistry to observe its effect on electron transfer during the oxidation reaction. Finally, the particles were coated with a nitric acid-stabilized ferrofluid in methanol. The resulting magnetic particles were characterized by several methods, including scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The effect of EDMA on the P(CMMA-EDMA) particle size and size distribution was investigated; the particle size changed from 300 to 340 nm, and the particles were monodispersed with a saturation magnetization of 11 Am2/kg. Finally, the effects of temperature and pH on the peroxidase-like activity of the magnetic P(CMMA-EDMA) and P(CMMA-EDMA)-Th particles were investigated. The particles, which exhibited a high activity at pH 4-6 and at ∼37 °C, represent a highly sensitive sensor component potentially useful in enzyme-based immunoassays.
Zobrazit více v PubMed
Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008;80:2250–2254. doi: 10.1021/ac702203f. PubMed DOI
Mu J, Li J, Zhao X, Yang EC, Zhao X-J. Cobalt-doped graphitic carbon nitride with enhanced peroxidase-like activity for wastewater treatment. RSC Adv. 2016;6:35568–35576. doi: 10.1039/C6RA02911F. DOI
Li M, et al. Dichlorofluorescein as a peroxidase mimic and its application to glucose detection. New J. Chem. 2017;41:7578–7582. doi: 10.1039/C7NJ01213F. DOI
Wang S, et al. Copper-based metal–organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus. ACS Appl. Mater. Interfaces. 2017;9:24440–24445. doi: 10.1021/acsami.7b07307. PubMed DOI
Jiang Y, Song N, Wang C, Pinna N, Lu X. A facile synthesis of Fe3O4/nitrogen-doped carbon hybrid nanofibers as a robust peroxidase-like catalyst for the sensitive colorimetric detection of ascorbic acid. J. Mater. Chem. B. 2017;5:5499–5505. doi: 10.1039/C7TB01058C. PubMed DOI
Wang N, Sun J, Chen L, Fan H, Ai S. A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim. Acta. 2015;182:1733–1738. doi: 10.1007/s00604-015-1506-8. DOI
Ci YX, Chen L, Wei S. Fluorescence reaction of the system mimetic peroxidase [Mn-T(4-TAP)P] - homovanillic acid-hydrogen peroxide. Spectrofluorimetric determination of H2O2. Fresenius J. Anal. Chem. 1989;334:34–36. doi: 10.1007/BF00481968. DOI
Sun L, Ding Y, Jiang Y, Liu Q. Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sens Actuators B Chem. 2017;239:848–856. doi: 10.1016/j.snb.2016.08.094. DOI
Fu S, et al. Structural effect of Fe3O4 nanoparticles on peroxidase-like activity for cancer therapy. Colloids Surf. B Biointerfaces. 2017;154:239–245. doi: 10.1016/j.colsurfb.2017.03.038. PubMed DOI
Li K, Zhao Y, Janik MJ, Song C, Guo X. Facile preparation of magnetic mesoporous Fe3O4/C/Cu composites as high performance Fenton-like catalysts. Appl. Surf. Sci. 2017;396:1383–1392. doi: 10.1016/j.apsusc.2016.11.170. DOI
Gao L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007;2:577–583. doi: 10.1038/nnano.2007.260. PubMed DOI
Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc. Chem. Res. 2014;47:1097–1105. doi: 10.1021/ar400250z. PubMed DOI
Golchin J, et al. Nanozyme applications in biology and medicine: an overview. Artif. Cells Nanomed. Biotechnol. 2017;45:1069–1076. doi: 10.1080/21691401.2017.1313268. PubMed DOI
An Q, et al. Peroxidase-like activity of Fe3O4@carbon nanoparticles enhnaces ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl. Mater. Interfaces. 2013;5:13248–13257. doi: 10.1021/am4042367. PubMed DOI
Chaudhari KN, Chaudhari NK, Yu JS. Peroxidase mimic activity of hematite iron oxides (α-Fe2O3) with different nanostructures. Catal. Sci. Technol. 2012;2:119–124. doi: 10.1039/C1CY00124H. DOI
Palmqvist, N. G. M., Seisenbaeva, G. A., Svedlindh, P. & Kessler, V. G. Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica nanpus. Nanoscale Res. Lett. 12, 10.1186/s11671-017-2404-2 (2017). PubMed PMC
Melnikova L, Pospiskova K, Mitroova Z, Kopcansky P, Safarik I. Peroxidase-like activity of magnetoferritin. Microchim. Acta. 2014;181:295–301. doi: 10.1007/s00604-013-1105-5. DOI
Horák D, Babič M, Macková H, Beneš MJ. Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J. Sep. Sci. 2007;30:1751–1772. doi: 10.1002/jssc.200700088. PubMed DOI
Zhang K, et al. Multi-layer dextran-decorated poly(glycidyl methacrylate)-co-divinyl benzene copolymer matrices enabling efficient protein chromatographic separation. React. Funct. Polym. 2017;112:45–52. doi: 10.1016/j.reactfunctpolym.2017.01.003. DOI
Yu B, Tian C, Cong H, Xu T. Synthesis of monodisperse poly(styrene-co-divinylbenzene) microspheres with binary porous structures and application in high-performance liquid chromatography. J. Mater. Sci. 2016;51:5240–5251. doi: 10.1007/s10853-016-9826-6. DOI
Tasfiyati AN, Iftitah ED, Sakti SP, Sabarudin A. Evaluation of glycidyl methacrylate-based monolith functionalized with weak anion exchange moiety inside 0.5 mm i.d. column for liquid chromatographic separation ofDNA. Analytical. Chem. Res. 2016;7:9–16. doi: 10.1016/j.ancr.2015.11.001. DOI
Nastasović AB, et al. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) Appl. Surf. Sci. 2016;385:605–615. doi: 10.1016/j.apsusc.2016.05.165. DOI
Ying L-L, et al. Poly(glycidyl methacrylate) nanoparticle-coated capillary with oriented antibody immobilization for immunoaffinity in-tube solid phase microextraction: Preparation and characterization. J. Chromatogr. A. 2017;1509:1–8. doi: 10.1016/j.chroma.2017.06.023. PubMed DOI
Zasońska, B. A. et al. Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation and determination of blood serum immunoglobulins with affinity to short form of unconventional Myo1C. Microchim. Acta185, 10.1007/s00604-018-2807-5 (2018). PubMed
Yang HH, et al. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem. 2004;76:1316–1321. doi: 10.1021/ac034920m. PubMed DOI
Soh N, et al. Chemiluminiscence sequential injection immunoassay for vitellogenin using magnetic microbeads. Talanta. 2004;64:1160–1168. doi: 10.1016/j.talanta.2004.06.001. PubMed DOI
Zasońska BA, et al. Thionine-modified poly(glycidyl methacrylate) nanospheres as labels of antibodies for biosensing applications. ACS Appl. Mater. Interfaces. 2015;7:24926–24931. doi: 10.1021/acsami.5b08469. PubMed DOI
Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981;17:1247–1248. doi: 10.1109/TMAG.1981.1061188. DOI
Heydari D, Sheibari H. Facile polymerization of β-cyclodextrin functionalized graphene or graphene oxide nanosheets using citric acid crosslinker by in situ melt polycondensation for enhanced electrochemical performance. RSC Adv. 2016;6:9760–9771. doi: 10.1039/C5RA24685G. DOI
Zhang J, Wang LL, Ma JQ, Wang YL. Preparation of ofloxacin poly(glycidyl methacrylate-co-ethylenedimethacrylate) (PGMA/EDMA) molecularly imprinted microspheres and their application to the analysis of quinolones in milk. Food Anal. Methods. 2014;7:721–729. doi: 10.1007/s12161-013-9754-x. DOI
Song JS, Winnik MA. Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules. 2005;38:8300–8307. doi: 10.1021/ma050992z. DOI
Tanrisever T, Okay O, Sönmezoglu IC. Kinetics of emulsifier-free emulsion polymerization of methyl methacrylate. J. Appl. Polym. Sci. 1996;61:485–493. doi: 10.1002/(SICI)1097-4628(19960718)61:3<485::AID-APP11>3.0.CO;2-0. DOI
Sajjadi S. Extending the limits of emulsifier-free emulsion polymerization to achieve small uniform particles. RSC Adv. 2015;5:58549–58560. doi: 10.1039/C5RA07132A. DOI
Ruan C, Yang F, Lei C, Deng J. Thionine covalently tethered to multilayer horseradish peroxidase in a self-assembled monolayer as an electron-transfer mediator. Anal. Chem. 1998;70:1721–1725. doi: 10.1021/ac970605m. PubMed DOI
Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed. 2009;48:2308–2312. doi: 10.1002/anie.200805279. PubMed DOI PMC
Yu F, Huang Y, Cole AJ, Yang VC. The artificial activity of magnetic iron oxide nanoparticles and its application to glucose detection. Biomaterials. 2009;30:4716–4722. doi: 10.1016/j.biomaterials.2009.05.005. PubMed DOI PMC
He W, Wamer W, Xia Q, Yin JJ, Fu PP. Enzyme-like activity of nanomaterials. Environ. Carcinog, Ecotoxical Rev.-Pt. C J. Env. Sci. Health. 2014;32:186–211. doi: 10.1080/10590501.2014.907462. PubMed DOI
Sarma, L. et al. Size-controlled synthesis of superparamagnetic iron-oxide and iron-oxide/iron/carbon nanotube nanocomposites by supersonic plasma expansion technique. J. Phys. D Appl. Phys. 51, 10.1088/1361-6463/aaba93 (2018).
Rebolledo UA, Nandini S, Sanchez OE, Sarma SSS. Combined effects of temperature and salinity on the demographic response of Proales similis (Beauchamp, 1907) and Brachionus plicatilis (Muller, 1786) (Rotifera) to mercury. Chemosphere. 2018;202:312–321. doi: 10.1016/j.chemosphere.2018.03.111. PubMed DOI
Dunlop, D. & Ozdemir, O. Rock Magnetism: Fundamentals and Frontiers (Cambirdge Univ. Press 1997).
Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013;42:6060–6093. doi: 10.1039/c3cs35486e. PubMed DOI
Liu L, et al. Effect of carboxyl and amino groups in fluorescein molecules on their peroxidase-like aktivity, Mol. Catal. 2017;439:186–192.
Gao L, Fan K, Yan X. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics. 2017;7:3207–3227. doi: 10.7150/thno.19738. PubMed DOI PMC