CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy-associated TCF4 triplet repeat
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Department of Health - United Kingdom
PubMed
30733599
PubMed Central
PMC6752322
DOI
10.1038/s41436-019-0453-x
PII: S1098-3600(21)04999-6
Knihovny.cz E-resources
- Keywords
- Fuchs endothelial corneal dystrophy, amplification-free sequencing, no-amp targeted sequencing, somatic mosaicism, triplet repeat-mediated disease,
- MeSH
- Alleles MeSH
- CRISPR-Cas Systems genetics MeSH
- Adult MeSH
- Trinucleotide Repeat Expansion genetics MeSH
- Fuchs' Endothelial Dystrophy genetics pathology MeSH
- Genetic Predisposition to Disease * MeSH
- Genotype MeSH
- Introns genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Sequence Analysis, DNA MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Transcription Factor 4 genetics MeSH
- Trinucleotide Repeats genetics MeSH
- Single Molecule Imaging MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- TCF4 protein, human MeSH Browser
- Transcription Factor 4 MeSH
PURPOSE: To demonstrate the utility of an amplification-free long-read sequencing method to characterize the Fuchs endothelial corneal dystrophy (FECD)-associated intronic TCF4 triplet repeat (CTG18.1). METHODS: We applied an amplification-free method, utilizing the CRISPR/Cas9 system, in combination with PacBio single-molecule real-time (SMRT) long-read sequencing, to study CTG18.1. FECD patient samples displaying a diverse range of CTG18.1 allele lengths and zygosity status (n = 11) were analyzed. A robust data analysis pipeline was developed to effectively filter, align, and interrogate CTG18.1-specific reads. All results were compared with conventional polymerase chain reaction (PCR)-based fragment analysis. RESULTS: CRISPR-guided SMRT sequencing of CTG18.1 provided accurate genotyping information for all samples and phasing was possible for 18/22 alleles sequenced. Repeat length instability was observed for all expanded (≥50 repeats) phased CTG18.1 alleles analyzed. Furthermore, higher levels of repeat instability were associated with increased CTG18.1 allele length (mode length ≥91 repeats) indicating that expanded alleles behave dynamically. CONCLUSION: CRISPR-guided SMRT sequencing of CTG18.1 has revealed novel insights into CTG18.1 length instability. Furthermore, this study provides a framework to improve the molecular diagnostic accuracy for CTG18.1-mediated FECD, which we anticipate will become increasingly important as gene-directed therapies are developed for this common age-related and sight threatening disease.
See more in PubMed
Paulson H. Repeat expansion diseases. Handb Clin Neurol. 2018;147:105–123. doi: 10.1016/B978-0-444-63233-3.00009-9. PubMed DOI PMC
Chakraborty S, Vatta M, Bachinski LL, et al. Molecular diagnosis of myotonic dystrophy. Curr Protoc Hum Genet. 2016;91:9 29 21–29 29 19. PubMed
Lorenzetti DW, Uotila MH, Parikh N, Kaufman HE. Central cornea guttata. Incidence in the general population. Am J Ophthalmol. 1967;64:1155–1158. doi: 10.1016/0002-9394(67)93073-5. PubMed DOI
Zarouchlioti C, Sanchez-Pintado B, Hafford Tear NJ, et al. Antisense therapy for a common corneal dystrophy ameliorates TCF4 repeat expansion-mediated toxicity. Am J Hum Genet. 2018;102:528–539. doi: 10.1016/j.ajhg.2018.02.010. PubMed DOI PMC
Gain P, Jullienne R, He Z, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134:167–173. doi: 10.1001/jamaophthalmol.2015.4776. PubMed DOI
Vedana G, Villarreal G, Jr., Jun AS. Fuchs endothelial corneal dystrophy: current perspectives. Clin Ophthalmol. 2016;10:321–330. PubMed PMC
Goldberg RA, Raza S, Walford E, et al. Fuchs endothelial corneal dystrophy: clinical characteristics of surgical and nonsurgical patients. Clin Ophthalmol. 2014;8:1761–1766. doi: 10.2147/OPTH.S68217. PubMed DOI PMC
Wieben ED, Aleff RA, Tosakulwong N, et al. A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS One. 2012;7:e49083. doi: 10.1371/journal.pone.0049083. PubMed DOI PMC
Nakano M, Okumura N, Nakagawa H, et al. Trinucleotide repeat expansion in the TCF4 gene in Fuchs’ endothelial corneal dystrophy in Japanese. Invest Ophthalmol Vis Sci. 2015;56:4865–4869. doi: 10.1167/iovs.15-17082. PubMed DOI
Xing C, Gong X, Hussain I, et al. Transethnic replication of association of CTG18.1 repeat expansion of TCF4 gene with Fuchs’ corneal dystrophy in Chinese implies common causal variant. Invest Ophthalmol Vis Sci. 2014;55:7073–7078. doi: 10.1167/iovs.14-15390. PubMed DOI PMC
Soliman AZ, Xing C, Radwan SH, et al. Correlation of severity of Fuchs endothelial corneal dystrophy with triplet repeat expansion in TCF4. JAMA Ophthalmol. 2015;133:1386–1391. doi: 10.1001/jamaophthalmol.2015.3430. PubMed DOI
Ebbert MTW, Farrugia SL, Sens JP, et al. Long-read sequencing across the C9orf72 ‘GGGGCC’ repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Mol Neurodegener. 2018;13:46. doi: 10.1186/s13024-018-0274-4. PubMed DOI PMC
Höijer Ida, Tsai Yu-Chih, Clark Tyson A., Kotturi Paul, Dahl Niklas, Stattin Eva-Lena, Bondeson Marie-Louise, Feuk Lars, Gyllensten Ulf, Ameur Adam. Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing. Human Mutation. 2018;39(9):1262–1272. doi: 10.1002/humu.23580. PubMed DOI PMC
Schule B, McFarland KN, Lee K, et al. Parkinson’s disease associated with pure ATXN10 repeat expansion. NPJ Parkinsons Dis. 2017;3:27. doi: 10.1038/s41531-017-0029-x. PubMed DOI PMC
Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–138. doi: 10.1126/science.1162986. PubMed DOI
Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010;472:431–455. doi: 10.1016/S0076-6879(10)72001-2. PubMed DOI
Travers KJ, Chin CS, Rank DR, et al. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. 2010;38:e159. doi: 10.1093/nar/gkq543. PubMed DOI PMC
Willemsen R, Levenga J, Oostra BA. CGG repeat in the FMR1 gene: size matters. Clin Genet. 2011;80:214–225. doi: 10.1111/j.1399-0004.2011.01723.x. PubMed DOI PMC
Liu G, Leffak M. Instability of (CTG)n*(CAG)n trinucleotide repeats and DNA synthesis. Cell Biosci. 2012;2:7. doi: 10.1186/2045-3701-2-7. PubMed DOI PMC
Ardui S, Race V, Zablotskaya A, et al. Detecting AGG interruptions in male and female FMR1 premutation carriers by single-molecule sequencing. Hum Mutat. 2017;38:324–331. doi: 10.1002/humu.23150. PubMed DOI
Mootha VV, Gong X, Ku HC, Xing C. Association and familial segregation of CTG18.1 trinucleotide repeat expansion of TCF4 gene in Fuchs’ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci. 2014;55:33–42. doi: 10.1167/iovs.13-12611. PubMed DOI PMC
Braida C, Stefanatos RK, Adam B, et al. Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients. Hum Mol Genet. 2010;19:1399–1412. doi: 10.1093/hmg/ddq015. PubMed DOI
Landrian I, McFarland KN, Liu J, et al. Inheritance patterns of ATCCT repeat interruptions in spinocerebellar ataxia type 10 (SCA10) expansions. PLoS One. 2017;12:e0175958. doi: 10.1371/journal.pone.0175958. PubMed DOI PMC
Santoro M, Masciullo M, Silvestri G, et al. Myotonic dystrophy type 1: role of CCG, CTC and CGG interruptions within DMPK alleles in the pathogenesis and molecular diagnosis. Clin Genet. 2017;92:355–364. doi: 10.1111/cge.12954. PubMed DOI
Kraus-Perrotta C, Lagalwar S. Expansion, mosaicism and interruption: mechanisms of the CAG repeat mutation in spinocerebellar ataxia type 1. Cerebellum Ataxias. 2016;3:20. doi: 10.1186/s40673-016-0058-y. PubMed DOI PMC
Golchet G, Carr J, Harris MG. Why don’t we have enough cornea donors? A literature review and survey. Optometry. 2000;71:318–328. PubMed
Hu J, Rong Z, Gong X, et al. Oligonucleotides targeting TCF4 triplet repeat expansion inhibit RNA foci and mis-splicing in Fuchs’ dystrophy. Hum Mol Genet. 2018;27:1015–1026. doi: 10.1093/hmg/ddy018. PubMed DOI PMC