Enterovirus as trigger of coeliac disease: nested case-control study within prospective birth cohort

. 2019 Feb 13 ; 364 () : l231. [epub] 20190213

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30760441

OBJECTIVE: To determine whether infection with human enterovirus or adenovirus, both common intestinal viruses, predicts development of coeliac disease. DESIGN: Case-control study nested within Norwegian birth cohort recruited between 2001 and 2007 and followed to September 2016. SETTING: Norwegian population. PARTICIPANTS: Children carrying the HLA genotype DR4-DQ8/DR3-DQ2 conferring increased risk of coeliac disease. EXPOSURES: Enterovirus and adenovirus detected using real time polymerase chain reaction in monthly stool samples from age 3 to 36 months. MAIN OUTCOME MEASURE: Coeliac disease diagnosed according to standard criteria. Coeliac disease antibodies were tested in blood samples taken at age 3, 6, 9, and 12 months and then annually. Adjusted odds ratios from mixed effects logistic regression model were used to assess the relation between viral infections before development of coeliac disease antibodies and coeliac disease. RESULTS: Among 220 children, and after a mean of 9.9 (SD 1.6) years, 25 children were diagnosed as having coeliac disease after screening and were matched to two controls each. Enterovirus was found in 370 (17%) of 2135 samples and was significantly more frequent in samples collected before development of coeliac disease antibodies in cases than in controls (adjusted odds ratio 1.49, 95% confidence interval 1.07 to 2.06; P=0.02). The association was restricted to infections after introduction of gluten. High quantity samples (>100 000 copies/μL) (adjusted odds ratio 2.11, 1.24 to 3.60; P=0.01) and long lasting infections (>2 months) (2.16, 1.16 to 4.04; P=0.02) gave higher risk estimates. Both the commonly detected enterovirus species Enterovirus A and Enterovirus B were significantly associated with coeliac disease. The association was not found for infections during or after development of coeliac disease antibodies. Adenovirus was not associated with coeliac disease. CONCLUSIONS: In this longitudinal study, a higher frequency of enterovirus, but not adenovirus, during early childhood was associated with later coeliac disease. The finding adds new information on the role of viral infections in the aetiology of coeliac disease.

Zobrazit více v PubMed

Green PH, Cellier C. Celiac disease. N Engl J Med 2007;357:1731-43. 10.1056/NEJMra071600 PubMed DOI

Romanos J, Rosén A, Kumar V, et al. PreventCD Group Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut 2014;63:415-22. 10.1136/gutjnl-2012-304110 PubMed DOI PMC

Mårild K, Vistnes M, Tapia G, et al. Midpregnancy and cord blood immunologic biomarkers, HLA genotype, and pediatric celiac disease. J Allergy Clin Immunol 2017;139:1696-8. 10.1016/j.jaci.2016.10.016 PubMed DOI

Liu E, Lee HS, Aronsson CA, et al. TEDDY Study Group Risk of pediatric celiac disease according to HLA haplotype and country. N Engl J Med 2014;371:42-9. 10.1056/NEJMoa1313977 PubMed DOI PMC

Agardh D, Lee HS, Kurppa K, et al. TEDDY Study Group Clinical features of celiac disease: a prospective birth cohort. Pediatrics 2015;135:627-34. 10.1542/peds.2014-3675 PubMed DOI PMC

Abadie V, Sollid LM, Barreiro LB, Jabri B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol 2011;29:493-525. 10.1146/annurev-immunol-040210-092915 PubMed DOI

Mårild K, Kahrs CR, Tapia G, Stene LC, Størdal K. Infections and risk of celiac disease in childhood: a prospective nationwide cohort study. Am J Gastroenterol 2015;110:1475-84. 10.1038/ajg.2015.287 PubMed DOI

Kemppainen KM, Lynch KF, Liu E, et al. TEDDY Study Group Factors That Increase Risk of Celiac Disease Autoimmunity After a Gastrointestinal Infection in Early Life. Clin Gastroenterol Hepatol 2017;15:694-702.e5. 10.1016/j.cgh.2016.10.033 PubMed DOI PMC

Bouziat R, Hinterleitner R, Brown JJ, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 2017;356:44-50. 10.1126/science.aah5298 PubMed DOI PMC

Webb A, Starr M. Acute gastroenteritis in children. Aust Fam Physician 2005;34:227-31. PubMed

Schumann M, Siegmund B, Schulzke JD, Fromm M. Celiac Disease: Role of the Epithelial Barrier. Cell Mol Gastroenterol Hepatol 2017;3:150-62. 10.1016/j.jcmgh.2016.12.006 PubMed DOI PMC

Stene LC, Honeyman MC, Hoffenberg EJ, et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol 2006;101:2333-40. 10.1111/j.1572-0241.2006.00741.x PubMed DOI

Kagnoff MF, Paterson YJ, Kumar PJ, et al. Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease. Gut 1987;28:995-1001. 10.1136/gut.28.8.995 PubMed DOI PMC

Mahon J, Blair GE, Wood GM, Scott BB, Losowsky MS, Howdle PD. Is persistent adenovirus 12 infection involved in coeliac disease? A search for viral DNA using the polymerase chain reaction. Gut 1991;32:1114-6. 10.1136/gut.32.10.1114 PubMed DOI PMC

Mercalli A, Lampasona V, Klingel K, et al. No evidence of enteroviruses in the intestine of patients with type 1 diabetes. Diabetologia 2012;55:2479-88. 10.1007/s00125-012-2591-4 PubMed DOI

Stene LC, Witsø E, Torjesen PA, et al. Islet autoantibody development during follow-up of high-risk children from the general Norwegian population from three months of age: design and early results from the MIDIA study. J Autoimmun 2007;29:44-51. 10.1016/j.jaut.2007.04.003 PubMed DOI

Cinek O, Witsø E, Jeansson S, et al. Longitudinal observation of enterovirus and adenovirus in stool samples from Norwegian infants with the highest genetic risk of type 1 diabetes. J Clin Virol 2006;35:33-40. 10.1016/j.jcv.2005.03.007 PubMed DOI

Husby S, Koletzko S, Korponay-Szabó IR, et al. ESPGHAN Working Group on Coeliac Disease Diagnosis. ESPGHAN Gastroenterology Committee. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr 2012;54:136-60. 10.1097/MPG.0b013e31821a23d0 PubMed DOI

Bürgin-Wolff A, Gaze H, Hadziselimovic F, et al. Antigliadin and antiendomysium antibody determination for coeliac disease. Arch Dis Child 1991;66:941-7. 10.1136/adc.66.8.941 PubMed DOI PMC

Bürgin-Wolff A, Dahlbom I, Hadziselimovic F, Petersson CJ. Antibodies against human tissue transglutaminase and endomysium in diagnosing and monitoring coeliac disease. Scand J Gastroenterol 2002;37:685-91. 10.1080/00365520212496 PubMed DOI

Arguelles-Grande C, Norman GL, Bhagat G, Green PH. Hemolysis interferes with the detection of anti-tissue transglutaminase antibodies in celiac disease. Clin Chem 2010;56:1034-6. 10.1373/clinchem.2009.141242 PubMed DOI

Myléus A, Ivarsson A, Webb C, et al. Celiac disease revealed in 3% of Swedish 12-year-olds born during an epidemic. J Pediatr Gastroenterol Nutr 2009;49:170-6. 10.1097/MPG.0b013e31818c52cc PubMed DOI

Honkanen H, Oikarinen S, Pakkanen O, et al. Human enterovirus 71 strains in the background population and in hospital patients in Finland. J Clin Virol 2013;56:348-53. 10.1016/j.jcv.2012.11.018 PubMed DOI

Claas EC, Schilham MW, de Brouwer CS, et al. Internally controlled real-time PCR monitoring of adenovirus DNA load in serum or plasma of transplant recipients. J Clin Microbiol 2005;43:1738-44. 10.1128/JCM.43.4.1738-1744.2005 PubMed DOI PMC

Cinek O, Kramna L, Mazankova K, et al. Virus genotyping by massive parallel amplicon sequencing: adenovirus and enterovirus in the Norwegian MIDIA study. J Med Virol 2018;10: [Epub ahead of print]. 10.1002/jmv.25361. PubMed DOI

Tapia G, Cinek O, Rasmussen T, et al. Human enterovirus RNA in monthly fecal samples and islet autoimmunity in Norwegian children with high genetic risk for type 1 diabetes: the MIDIA study. Diabetes Care 2011;34:151-5. 10.2337/dc10-1413 PubMed DOI PMC

Baggen J, Thibaut HJ, Strating JRPM, van Kuppeveld FJM. Publisher Correction: The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol 2018;16:391. 10.1038/s41579-018-0022-3 PubMed DOI

Pallansch MA, Roos RP. Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Knipe DM, Howley PM, eds. Fields Virology. 7th ed Lippincott Williams &Wilkins, 2007: 839-94.

Witsø E, Palacios G, Cinek O, et al. High prevalence of human enterovirus a infections in natural circulation of human enteroviruses. J Clin Microbiol 2006;44:4095-100. 10.1128/JCM.00653-06 PubMed DOI PMC

Viskari H, Oikarinen S, Hoppu S, et al. Live attenuated enterovirus vaccine (OPV) is not associated with islet autoimmunity in children with genetic susceptibility to type 1 diabetes: prospective cohort study. Diabetologia 2018;61:203-9. 10.1007/s00125-017-4410-4 PubMed DOI

Norwegian Institute of Public Health. Vaksinasjonsveilederen for helsepersonell (information about the norwegian vaccine program). 2017 [cited 6 February 2018]. https://www.fhi.no/nettpub/vaksinasjonsveilederen-for-helsepersonell/vaksiner-mot-de-enkelte-sykdommene/poliovaksinasjon-poliomyelitt---vei/.

Nilsen RM, Vollset SE, Gjessing HK, et al. Self-selection and bias in a large prospective pregnancy cohort in Norway. Paediatr Perinat Epidemiol 2009;23:597-608. 10.1111/j.1365-3016.2009.01062.x PubMed DOI

Witsø E, Cinek O, Aldrin M, et al. Predictors of sub-clinical enterovirus infections in infants: a prospective cohort study. Int J Epidemiol 2010;39:459-68. 10.1093/ije/dyp333 PubMed DOI

Oikarinen M, Tauriainen S, Oikarinen S, et al. Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes 2012;61:687-91. 10.2337/db11-1157 PubMed DOI PMC

Honkanen H, Oikarinen S, Nurminen N, et al. Detection of enteroviruses in stools precedes islet autoimmunity by several months: possible evidence for slowly operating mechanisms in virus-induced autoimmunity. Diabetologia 2017;60:424-31. 10.1007/s00125-016-4177-z PubMed DOI

Krogvold L, Edwin B, Buanes T, et al. Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes 2015;64:1682-7. 10.2337/db14-1370 PubMed DOI

Tapia G, Cinek O, Rasmussen T, et al. Human enterovirus RNA in monthly fecal samples and islet autoimmunity in Norwegian children with high genetic risk for type 1 diabetes: the MIDIA study. Diabetes Care 2011;34:151-5. 10.2337/dc10-1413 PubMed DOI PMC

Kagnoff MF, Austin RK, Hubert JJ, Bernardin JE, Kasarda DD. Possible role for a human adenovirus in the pathogenesis of celiac disease. J Exp Med 1984;160:1544-57. 10.1084/jem.160.5.1544 PubMed DOI PMC

Lähdeaho ML, Parkkonen P, Reunala T, Mäki M, Lehtinen M. Antibodies to E1b protein-derived peptides of enteric adenovirus type 40 are associated with celiac disease and dermatitis herpetiformis. Clin Immunol Immunopathol 1993;69:300-5. 10.1006/clin.1993.1184 PubMed DOI

Lawler M, Humphries P, O’Farrelly C, et al. Adenovirus 12 E1A gene detection by polymerase chain reaction in both the normal and coeliac duodenum. Gut 1994;35:1226-32. 10.1136/gut.35.9.1226 PubMed DOI PMC

Schumann M, Siegmund B, Schulzke JD, Fromm M. Celiac disease: role of the epithelial barrier. Cell Mol Gastroenterol Hepatol 2017;3:150-62. 10.1016/j.jcmgh.2016.12.006 PubMed DOI PMC

Sollid LM, Jabri B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat Rev Immunol 2013;13:294-302. 10.1038/nri3407 PubMed DOI PMC

Matzinger P. The danger model: a renewed sense of self. Science 2002;296:301-5. 10.1126/science.1071059 PubMed DOI

Stone VM, Hankaniemi MM, Svedin E, et al. A Coxsackievirus B vaccine protects against virus-induced diabetes in an experimental mouse model of type 1 diabetes. Diabetologia 2018;61:476-81. 10.1007/s00125-017-4492-z PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...