Peptide Functionalization of Gold Nanoparticles for the Detection of Carcinoembryonic Antigen in Blood Plasma via SPR-Based Biosensor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30778384
PubMed Central
PMC6369193
DOI
10.3389/fchem.2019.00040
Knihovny.cz E-zdroje
- Klíčová slova
- SPR, biosensor, blood, functionalization, gold nanoparticles, immuno-assay, peptide, ζ-potential,
- Publikační typ
- časopisecké články MeSH
Nanoparticles functionalized with specific biological recognition molecules play a major role for sensor response enhancement in surface plasmon resonance (SPR) based biosensors. The functionalization procedure of such nanoparticles is crucial, since it influences their interactions with the environment and determines their applicability to biomolecular detection in complex matrices. In this work we show how the ζ-potential (Zpot) of bio-functionalized gold spherical NPs (Bio-NPs) is related to the SPR sensor response enhancement of an immune-sandwich-assay for the detection of the carcinoembryonic antigen (CEA), a cancer marker for colorectal carcinomas. In particular, we prepare bio-functional nanoparticles by varying the amount of peptide (either streptavidin or antibody against CEA) bound on their surface. Specific and non-specific sensor responses, reproducibility, and colloidal stability of those bio-functional nanoparticles are measured via SPR and compared to ζ-potential values. Those parameters are first measured in buffer solution, then measured again when the surface of the biosensor is exposed to blood plasma, and finally when the nanoparticles are immersed in blood plasma and flowed overnight on the biosensor. We found that ζ-potential values can guide the design of bio-functional NPs with improved binding efficiency and reduced non-specific sensor response, suitable reproducibility and colloidal stability, even in complex matrixes like blood plasma.
Zobrazit více v PubMed
Barkat M. A., Harshita A. B., Beg S., Ahmad F. J. (2001). Multifunctional Nanocarriers for Contemporary Healthcare Applications. Hershey, PA: IGI Global.
Bastús N. G., Comenge J., Puntes V. (2011). Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus ostwald ripening. Langmuir 27, 11098–11105. 10.1021/la201938u PubMed DOI
Cheng M. J., Prabakaran P., Kumar R., Sridhar S., Ebong E. E. (2018). Synthesis of functionalized 10-nm polymer-coated gold particles for endothelium targeting and drug delivery. J. Vis. Exp. 56760. 10.3791/56760 PubMed DOI PMC
Chortarea S., Fytianos K., Rodriguez-Lorenzo L., Petri-Fink A., Rothen-Rutishauser B. (2018). Distribution of polymer-coated gold nanoparticles in a 3D lung model and indication of apoptosis after repeated exposure. Nanomedicine 13, 1169–1185. 10.2217/nnm-2017-0358 PubMed DOI
Cosgrove T. (2010). Colloid Science: Principles, Methods and Applications. Oxford, UK: Blackwell Publishing Ltd.
Dai Q., Walkey C., Chan W. C. (2014). Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem. Int. Ed. Engl. 53, 5093–5096. 10.1002/anie.201309464 PubMed DOI
de la Escosura-Muniz A., Parolo C., Merkoci A. (2010). Immunosensing using nanoparticles. Mater Today 13, 17–27. 10.1016/S1369-7021(10)70125-5 DOI
Derjaguin B. V., Churaev N. V., Muller V. M. (1987). The Derjaguin—Landau—Verwey—Overbeek (DLVO) theory of stability of lyophobic colloids, in Surface Forces (Boston, MA: Springer: ).
Falagan-Lotsch P., Grzincic E. M., Murphy C. J. (2017). New advances in nanotechnology-based diagnosis and therapeutics for breast cancer: an assessment of active-targeting inorganic nanoplatforms. Bioconjug. Chem. 28, 135–152. 10.1021/acs.bioconjchem.6b00591 PubMed DOI
Farka Z., Jurík T., Kovár D., Trnková L., Skládal P. (2017). Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem. Rev. 117, 9973–10042. 10.1021/acs.chemrev.7b00037 PubMed DOI
Galanzha E. I., Shashkov E. V., Kelly T., Kim J. W., Yang L., Zharov V. P. (2009). In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4, 855–860. 10.1038/nnano.2009.333 PubMed DOI PMC
Gamrad L., Rehbock C., Krawinkel J., Tumursukh B., Heisterkamp A., Barcikowski S. (2014). Charge balancing of model gold-nanoparticle-peptide conjugates controlled by the peptide's net charge and the ligand to nanoparticle ratio. J. Phys. Chem. C. 118, 10302–10313. 10.1021/jp501489t DOI
Haes A. J., Van Duyne R. P. (2002). A nanoscale optical blosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596–10604. 10.1021/ja020393x PubMed DOI
Jo H., Her J., Ban C. (2015). Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens. Bioelectron. 71, 129–136. 10.1016/j.bios.2015.04.030 PubMed DOI
Kajiura M., Nakanishi T., Iida H., Takada H., Osaka T. (2009). Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label. J. Colloid. Interf Sci. 335, 140–145. 10.1016/j.jcis.2009.03.016 PubMed DOI
Lather V., Poonia N., Pandita D. (2018). Mesoporous silica nanoparticles: a multifunctional nanocarrier for therapeutic applications, in Multifunctional Nanocarriers for Contemporary Healthcare Applications, eds Abul B. M., Harshita A. B., Sarwar B., Ahmad Farhan J. (Hershey, PA: IGI global; ), 192–246.
Li M. H., Choi S. K., Leroueil P. R., Baker J. R. (2014). Evaluating binding avidities of populations of heterogeneous multivalent ligand-functionalized nanoparticles. ACS Nano 8, 5600–5609. 10.1021/nn406455s PubMed DOI
Liu A. H., Wang G. Q., Wang F., Zhang Y. (2017). Gold nanostructures with near-infrared plasmonic resonance: synthesis and surface functionalization. Coordin. Chem. Rev. 336, 28–42. 10.1016/j.ccr.2016.12.019 DOI
Liu Y. L., Shipton M. K., Ryan J., Kaufman E. D., Franzen S., Feldheim D. L. (2007). Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers. Anal. Chem. 79, 2221–2229. 10.1021/ac061578f PubMed DOI
Lundqvist M., Stigler J., Cedervall T., Berggård T., Flanagan M. B., Lynch I., et al. . (2011). The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5, 7503–7509. 10.1021/nn202458g PubMed DOI
Martinez-Perdiguero J., Retolaza A., Bujanda L., Merino S. (2014). Surface plasmon resonance immunoassay for the detection of the TNF alpha biomarker in human serum. Talanta 119, 492–497. 10.1016/j.talanta.2013.11.063 PubMed DOI
Mitchell J. S., Wu Y., Cook C. J., Main L. (2005). Sensitivity enhancement of surface plasmon resonance biosensing of small molecules. Anal. Biochem. 343, 125–135. 10.1016/j.ab.2005.05.001 PubMed DOI
Mittal S., Kaur H., Gautam N., Mantha A. K. (2017). Biosensors for breast cancer diagnosis: a review of bioreceptors, biotransducers and signal amplification strategies. Biosens. Bioelectron. 88, 217–231 10.1016/j.bios.2016.08.028 PubMed DOI
Nel A. E., Mädler L., Velegol D., Xia T., Hoek E. M. V., Somasundaran P., et al. . (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557. 10.1038/nmat2442 PubMed DOI
Nie L., Wang S., Wang X., Rong P., Ma Y., Liu G., et al. . (2014). In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small 10, 1585–1593. 10.1002/smll.201302924 PubMed DOI
Ou H., Cheng T., Zhang Y., Liu J., Ding Y., Zhen J., et al. . (2018). Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater. 65, 339–348. 10.1016/j.actbio.2017.10.034 PubMed DOI
Rausch K., Reuter A., Fischer K., Schmidt M. (2010). Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 11, 2836–2839. 10.1021/bm100971q PubMed DOI
Rejeeth C., Kannan S. (2016). p53 gene therapy of human breast carcinoma: using a transferrin-modified silica nanoparticles. Breast Cancer 23, 101–110. 10.1007/s12282-014-0537-z PubMed DOI
Rizk N., Christoforou N., Lee S. (2016). Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles. Nanotechnology 27:185704. 10.1088/0957-4484/27/18/185704 PubMed DOI
Sacchetti C., Motamedchaboki K., Magrini A., Palmieri G., Mattei M., Bernardini S., et al. . (2013). Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano. 7, 1974–1989. 10.1021/nn400409h PubMed DOI
Sanz V., Conde J., Hernandez Y., Baptista P. V., Ibarra M. R., de la Fuente J. M. (2012). Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles. J. Nanopart. Res. 14:917 10.1007/s11051-012-0917-2 DOI
Shen J. W., Li Y. B., Gu H. S., Xia F., Zuo X. (2014). Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem. Rev. 114, 7631–7677. 10.1021/cr300248x PubMed DOI
Soukka T., Härmä H., Paukkunen J., Lövgren T. (2001). Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle-antibody bioconjugates. Anal. Chem. 73, 2254–2260. 10.1021/ac001287l PubMed DOI
Špringer T., Ermini M. L., Špačková B., Jabloňků J., Homola J. (2014). Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters. Anal. Chem. 86, 10350–10356. 10.1021/ac502637u PubMed DOI
Špringer T., Piliarik M., Homola J. (2010a). Real-time monitoring of biomolecular interactions in blood plasma using a surface plasmon resonance biosensor. Anal. Bioanal. Chem. 398, 1955–1961. 10.1007/s00216-010-4159-9 PubMed DOI
Špringer T., Piliarik M., Homola J. (2010b). Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sensor. Actuat. B Chem. 145, 588–591. 10.1016/j.snb.2009.11.018 DOI
Vaisocherová H., Zítová A., Lachmanová M., Štěpánek J., Králíková S., Liboska R., et al. . (2006). Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method. Biopolymers 82, 394–398. 10.1002/bip.20433 PubMed DOI
Viswambari Devi R. V., Doble M., Verma R. S. (2015). Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens. Bioelectron. 68, 688–698. 10.1016/j.bios.2015.01.066 PubMed DOI
Wang X., Mei Z., Wang Y., Tang L. (2015). Gold nanorod biochip functionalization by antibody thiolation. Talanta 136, 1–8. 10.1016/j.talanta.2014.11.023 PubMed DOI PMC
Zhang J., Sun Y., Wu Q., Gao Y., Zhang H., Bai Y., et al. . (2014). Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer. Colloid Surf. B. 116, 211–218. 10.1016/j.colsurfb.2014.01.003 PubMed DOI
Zhang Y., Wang G., Yang L., Wang F., Liu A. H. (2018). Recent advances in gold nanostructures based biosensing and bioimaging. Coordin. Chem. Rev. 370, 1–21. 10.1016/j.ccr.2018.05.005 DOI