Fenofibrate Decreases Hepatic P-Glycoprotein in a Rat Model of Hereditary Hypertriglyceridemia
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
30787874
PubMed Central
PMC6373460
DOI
10.3389/fphar.2019.00056
Knihovny.cz E-resources
- Keywords
- Mdr1, P-glycoprotein, drug-drug interactions, fenofibrate, hypertriglyceridemia, metabolic syndrome,
- Publication type
- Journal Article MeSH
P-glycoprotein (P-gp) is a membrane-bound transporter encoded by Mdr1a/Abcb1a and Mdr1b/Abcb1b genes in rodents involved in the efflux of cytotoxic chemicals and metabolites from cells. Modulation of its activity influences P-gp-mediated drug delivery and drug-drug interaction (DDI). In the current study, we tested the effects of fenofibrate on P-gp mRNA and protein content in non-obese model of metabolic syndrome. Males hereditary hypertriglyceridemic rats (HHTg) were fed standard laboratory diet (STD) (Controls) supplemented with micronized fenofibrate in lower (25 mg/kg b. wt./day) or in higher (100 mg/kg b. wt./day) dose for 4 weeks. Liver was used for the subsequent mRNA and protein content analysis. Fenofibrate in lower dose decreased hepatic Mdr1a by 75% and Mdr1b by 85%, while fenofibrate in higher dose decreased Mdr1a by 90% and Mdr1b by 92%. P-gp protein content in the liver was decreased by 74% in rat treated with fenofibrate at lower dose and by 88% in rats using fenofibrate at higher dose. These findings demonstrate for the first time that fenofibrate decreases both mRNA and protein amount of P-gp and suggest that fenofibrate could affect bioavailability and interaction of drugs used to treat dyslipidemia-induced metabolic disorders.
See more in PubMed
Aye I. L., Singh A. T., Keelan J. A. (2009). Transport of lipids by ABC proteins: interactions and implications for cellular toxicity, viability and function. Chem. Biol. Interact. 180, 327–339. 10.1016/j.cbi.2009.04.012, PMID: PubMed DOI
Devault A., Gros P. (1990). Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol. Cell. Biol. 10, 1652–1663. 10.1128/MCB.10.4.1652, PMID: PubMed DOI PMC
Ehrhardt M., Lindenmaier H., Burhenne J., Haefeli W. E., Weiss J. (2004). Influence of lipid lowering fibrates on P-glycoprotein activity in vitro. Biochem. Pharmacol. 67, 285–292. 10.1016/j.bcp.2003.09.008, PMID: PubMed DOI
Foucaud-Vignault M., Soayfane Z., Menez C., Bertrand-Michel J., Martin P. G., Guillou H., et al. . (2011). P-glycoprotein dysfunction contributes to hepatic steatosis and obesity in mice. PLoS One 6:e23614. 10.1371/journal.pone.0023614, PMID: PubMed DOI PMC
Geng Q., Ren J., Chen H., Lee C., Liang W. (2013). Adverse events following statin-fenofibrate therapy versus statin alone: a meta-analysis of randomized controlled trials. Clin. Exp. Pharmacol. Physiol. 40, 219–226. 10.1111/1440-1681.12053, PMID: PubMed DOI
Glaeser H. (2011). Importance of P-glycoprotein for drug-drug interactions. Handb. Exp. Pharmacol. 201, 285–297. 10.1007/978-3-642-14541-4_7 PubMed DOI
Ibarra-Lara L., Sánchez-Aguilar M., Sánchez-Mendoza A., Del Valle-Mondragón L., Soria-Castro E., Carreón-Torres E., et al. (2017). Fenofibrate therapy restores antioxidant protection and improves myocardial insulin resistance in a rat model of metabolic syndrome and myocardial ischemia: the role of angiotensin II. Molecules 22:31. 10.3390/molecules22010031 PubMed DOI PMC
Kok T., Bloks V. W., Wolters H., Havinga R., Jansen P. L., Staels B., et al. . (2003). Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice. Biochem. J. 369, 539–547. 10.1042/bj20020981, PMID: PubMed DOI PMC
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25, 402–408. 10.1006/meth.2001.1262, PMID: PubMed DOI
Montesinos R. N., Moulari B., Gromand J., Beduneau A., Lamprecht A., Pellequer Y. (2014). Coadministration of P-glycoprotein modulators on loperamide pharmacokinetics and brain distribution. Drug Metab. Dispos. 42, 700–706. 10.1124/dmd.113.055566, PMID: PubMed DOI
More V. R., Campos C. R., Evans R. A., Oliver K. D., Chan G. N., Miller D. S., et al. . (2017). PPAR-alpha, a lipid-sensing transcription factor, regulates blood-brain barrier efflux transporter expression. J. Cereb. Blood Flow Metab. 37, 1199–1212. 10.1177/0271678x16650216, PMID: PubMed DOI PMC
Sharom F. J. (2014). Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function. Front. Oncol. 4:41. 10.3389/fonc.2014.00041, PMID: PubMed DOI PMC
Schinkel A. H., Wagenaar E., van Deemter L., Mol C. A., Borst P. (1995). Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest. 96, 1698–1705. 10.1172/jci118214, PMID: PubMed DOI PMC
Silhavy J., Zidek V., Landa V., Simakova M., Mlejnek P., Oliyarnyk O., et al. . (2015). Rosuvastatin ameliorates inflammation, renal fat accumulation, and kidney injury in transgenic spontaneously hypertensive rats expressing human C-reactive protein. Physiol. Res. 64, 295–301. PMID: PubMed
Ueda K., Clark D. P., Chen C. J., Roninson I. B., Gottesman M. M., Pastan I. (1987). The human multidrug resistance (mdr1) gene. cDNA cloning and transcription initiation. J. Biolumin. Chemilumin. 262, 505–508. PMID: PubMed
Vrana A., Kazdova L. (1990). The hereditary hypertriglyceridemic nonobese rat: an experimental model of human hypertriglyceridemia. Transplant. Proc. 22:2579. PMID: PubMed
Vranckx P., Valgimigli M., Heidbuchel H. (2018). The significance of drug-drug and drug-food interactions of oral anticoagulation. Arrhythmia Electrophysiol. Rev. 7, 55–61. 10.15420/aer.2017.50.1, PMID: PubMed DOI PMC
Yamazaki M., Li B., Louie S. W., Pudvah N. T., Stocco R., Wong W., et al. (2005). Effects of fibrates on human organic anion-transporting polypeptide 1B1-, multidrug resistance protein 2- and P-glycoprotein-mediated transport. Xenobiotica 35, 737–753. 10.1080/00498250500136676 PubMed DOI
Zicha J., Pechanova O., Cacanyiova S., Cebova M., Kristek F., Torok J., et al. (2006). Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol. Res. 55(Suppl. 1), S49–S63. PubMed
Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia