Microfabricated liquid junction hybrid capillary electrophoresis-mass spectrometry interface for fully automated operation
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
16-09283Y
Grant Agency of the Czech Republic - International
P206/12/G014
Grant Agency of the Czech Republic - International
Institutional funding RVO: 68081715 - International
CZ.02.1.01/0.0/0.0/16 026/0008446
European Regional Development Fund - International
- Keywords
- CE-MS interface, Capillary electrophoresis, Liquid junction, Microfabrication,
- MeSH
- Models, Chemical MeSH
- Electrophoresis, Capillary instrumentation MeSH
- Mass Spectrometry instrumentation MeSH
- Automation, Laboratory MeSH
- Microfluidic Analytical Techniques instrumentation methods MeSH
- Proteins analysis isolation & purification MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Proteins MeSH
One of the challenging instrumental aspects in coupling an automated CE instrument with ESI mass spectrometry (CE-MS) is finding the balance between the stability, reproducibility and sensitivity of the analysis and compatibility with the standard CE instrumentation. Here, we present a development of a new liquid junction based electrospray interface for automated CE-MS, with a focus on the technical design followed by computer modeling of transport conditions as well as characterization of basic performance of the interface. This hybrid arrangement designed as a microfabricated unit attachable to the automated CE instrument allows using of a wide range of separation capillaries with respect to their diameter, length or internal coating (e.g., for suppressed electroosmotic flow). Different compositions of the ESI liquid and background electrolyte solutions can be used if needed. The microfabricated part, prepared by laser machining from polyimide, includes a self-aligning liquid junction, a short transport channel, and a pointed sprayer for the electrospray ionization. This microfabricated part is positioned in a plastic connection block securing the separation capillary and flushing ports. Transport conditions were modelled using computer simulation and the real life performance of the interface was compared to that of a commercial sheath liquid interface. The basic performance of the interface was demonstrated by separations of peptides, proteins, and oligosaccharides.
CEITEC Masaryk University Brno Czech Republic
Institute of Analytical Chemistry of the Czech Academy of Sciences Brno Czech Republic
See more in PubMed
Stolz, A., Jooß, K., Hocker, O., Romer, J., Schlecht, J., Neusuß, C., Electrophoresis 2019, 40, 79-112.
Smith, R. D., Barinaga, C. J., Udseth, H. R., Anal. Chem. 1988, 60, 1948-1952.
Schmidt, A., Karas, M., Dülcks, T., J. Am. Soc. Mass Spectrom. 2003, 14, 492-500.
Page, J. S., Kelly, R. T., Tang, K., Smith, R.D., J. Am. Soc. Mass Spectrom. 2007, 18, 1582-1590.
Sun, L., Zhu, G., Zhang, Z., Mou, S., Dovichi, N. J., J. Proteome. Res. 2015, 14, 2312-2321.
Moini, M., Anal. Chem. 2001, 73, 3497-3501.
Whitt, J. T., Moini, M., Anal. Chem. 2003, 75, 2188-2191.
Moini, M., Anal. Chem. 2007, 79, 4241-4246.
Sarver, S. A., Schiavone, N. M., Arceo, J., Peuchen, E. H., Zhang, Z. B., Sung, L. L., Dovichi, N. J., Talanta 2017, 165, 522-525.
Chen, Y. R., Tseng, M. C., Her, G. R., Electrophoresis 2005, 26, 1376-1382.
Maxwell, E. J., Zhong, X. F., Zhang, H., van Zeijl, N., Chen, D. D. Y., Electrophoresis 2010, 31, 1130-1137.
Johnson, R. T., To, N. H., Stobaugh, J. F., Lunte, C. E., Chromatographia 2017, 80, 1061-1067.
Choi, S. B., Zamarbide, M., Manzini, M. C., Nemes, P., J. Am. Soc. Mass Spectrom. 2017, 28, 597-607.
Busnel, J. M., Schoenmaker, B., Ramautar, R., Carrasco-Pancorbo, A., Ratnayake, C., Feitelson, J. S., Chapman, J. D., Deelder, A. M., Mayboroda, O. A., Anal. Chem. 2010, 82, 9476-9483.
Tycova, A., Foret, F., J. Chromatogr. A 2015, 1388, 274-279.
Tycova, A., Vido, M., Kovarikova, P., Foret, F., J. Chromatogr. A 2016, 1466, 173-179.
Foret, F., Thompson, T. J., Vouros, P., Karger, B. L., Gebauer, P., Bocek, P., Anal. Chem. 1994, 66, 4450-4458.
Foret, F., Zhou, H., Gangl, E., Karger, B. L., Electrophoresis 2000, 21, 1363-1371.
Kleparnik, K., Otevrel, M., Electrophoresis 2010, 31, 879-885.
Hjertén, S., J. Chromatogr. 1985, 347, 191-198.
Kusy, P., Kleparnik, K., Aturki, Z., Fanali, S., Foret, F., Electrophoresis 2007, 28, 1964-1969.
Krenkova, J., Kleparnik, K., Grym, J., Luksch, J., Foret, F., Electrophoresis 2016, 37, 414-417.
Lee, E. D., Muck, W., Henion, J. D., Covey, T. R., J. Chromatogr. 1988, 458, 313-321.
Yin, H., Killeen, K., Brennen, R., Sobek, D., Werlich, M., van de Goor, T., Anal. Chem. 2005, 77, 527-533.
Pospichal, P., Gebauer, P., Bocek, P., Chem. Rev. 1989, 89, 419-430.
Deml, M., Foret, F., Bocek, P., J. Chromatogr. 1985, 320, 159-166.
Faserl, K., Sarg, B., Kremser, L., Lindner, H., Anal. Chem. 2011, 83, 7297-7305.
Bonvin, G., Veuthey, J.-L., Rudaz, S., Schappler, J., Electrophoresis 2012, 33, 552-562.
Haselberg, R., Ratnayake, C. K., de Jong, G. J., Somsen, G. W., J. Chromatogr. A 2010, 1217, 7605-7611.
Hajba, L., Szekrenyes, A., Borza, B., Guttman, A., Drug Discov. Today 2018, 23, 616-625.
Szigeti, M., Chapman, J., Borza, B., Guttman, A., Electrophoresis 2018, 39, 2340-2343.
Partyka, J., Foret, F., J. Chromatogr. A 2012, 1267, 116-120.
Krenkova, J., Bobal, P., Partyka, J., Cmelik, R., Foret, F., J. Chromatogr. A 2018, 1570, 67-74.
Partyka, J., Krenkova, J., Cmelik, R., Foret, F., J. Chromatogr. A 2018, 1560, 91-96.
Hocker, O., Montealegre, C., Neusuß, C., Anal. Bioanal. Chem. 2018, 410, 5265-5275.
https://sciex.com/products/capillary-electrophoresis/cesi-8000-plus-esi-ms-high-performance-system
http://cmpscientific.com/
https://908devices.com/products/zipchip/
Microfabricated Liquid Junction Capillary Electrophoresis-Mass Spectrometry Interface