Protura are unique: first evidence of specialized feeding on ectomycorrhizal fungi in soil invertebrates

. 2019 Feb 22 ; 19 (1) : 10. [epub] 20190222

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30795747
Odkazy

PubMed 30795747
PubMed Central PMC6387494
DOI 10.1186/s12898-019-0227-y
PII: 10.1186/s12898-019-0227-y
Knihovny.cz E-zdroje

BACKGROUND: Ectomycorrhizal fungi (ECM) play a central role in nutrient cycling in boreal and temperate forests, but their role in the soil food web remains little understood. One of the groups assumed to live as specialised mycorrhizal feeders are Protura, but experimental and field evidence is lacking. We used a combination of three methods to test if Protura are specialized mycorrhizal feeders and compared their trophic niche with other soil invertebrates. Using pulse labelling of young beech and ash seedlings we analysed the incorporation of 13C and 15N into Acerentomon gallicum. In addition, individuals of Protura from temperate forests were collected for the analysis of neutral lipid fatty acids and natural variations in stable isotope ratios. RESULTS: Pulse labelling showed rapid incorporation of root-derived 13C, but no incorporation of root-derived 15N into A. gallicum. The transfer of 13C from lateral roots to ectomycorrhizal root tips was high, while it was low for 15N. Neutral lipid fatty acid (NLFA) analysis showed high amounts of bacterial marker (16:1ω7) and plant marker (16:0 and 18:1ω9) fatty acids but not of the fungal membrane lipid 18:2ω6,9 in A. gallicum. Natural variations in stable isotope ratios in Protura from a number of temperate forests were distinct from those of the great majority of other soil invertebrates, but remarkably similar to those of sporocarps of ECM fungi. CONCLUSIONS: Using three in situ methods, stable isotope labelling, neutral lipid fatty acid analysis and natural variations of stable isotope ratios, we showed that Protura predominantly feed on mycorrhizal hyphae via sucking up hyphal cytoplasm. Predominant feeding on ectomycorrhizal mycelia by Protura is an exception; the limited consumption of ECM by other soil invertebrates may contribute to carbon sequestration in temperate and boreal forests.

Zobrazit více v PubMed

Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, et al. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil. 2013;366:1–27. doi: 10.1007/s11104-013-1630-3. DOI

Wallander H, Göransson H, Rosengren U. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia. 2004;139:89–97. doi: 10.1007/s00442-003-1477-z. PubMed DOI

Högberg MN, Högberg P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol. 2002;154:791–795. doi: 10.1046/j.1469-8137.2002.00417.x. PubMed DOI

Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science. 2013;339:1615–1618. doi: 10.1126/science.1231923. PubMed DOI

Treseder KK, Torn MS, Masiello CA. An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biol Biochem. 2006;38:1077–1082. doi: 10.1016/j.soilbio.2005.09.006. DOI

Averill C, Turner BL, Finzi AC. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature. 2014;505:543–545. doi: 10.1038/nature12901. PubMed DOI

Fitter A, Garbaye J. Interactions between mycorrhizal fungi and other soil organisms. Plant Soil. 1994;159:123–132. doi: 10.1007/BF00000101. DOI

Pollierer MM, Dyckmans J, Scheu S, Haubert D. Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis. Funct Ecol. 2012;26:978–990. doi: 10.1111/j.1365-2435.2012.02005.x. DOI

Potapov AM, Tiunov AV. Stable isotope composition of mycophagous collembolans versus mycotrophic plants: do soil invertebrates feed on mycorrhizal fungi? Soil Biol Biochem. 2016;93:115–118. doi: 10.1016/j.soilbio.2015.11.001. DOI

Krauss J, Funke W. Extraordinary high density of Protura in a windfall area of young spruce plants. Pedobiologia. 1999;43:44–46.

Schaefer M, Schauermann J. The soil fauna of beech forests: comparison between a mull and a moder soil. Pedobiologia. 1990;34:299–314.

Petersen H, Luxton M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos. 1982;39:288–388. doi: 10.2307/3544689. DOI

Sturm H. Die Nahrung der Proturen. Naturwissenschaften. 1959;46:90–91. doi: 10.1007/BF00599134. DOI

Pass G, Szucsich NU. 100 years of research on the Protura: many secrets still retained. Soil Org. 2011;83:309–334.

Traugott M, Kamenova S, Ruess L, Seeber J, Plantegenest M. Empirically characterising trophic networks: what emerging DNA—based methods, stable isotope and fatty acid analyses can offer. Adv Ecol Res. 2013;49:177–224. doi: 10.1016/B978-0-12-420002-9.00003-2. DOI

Epron D, Bahn M, Derrien D, Lattanzi FA, Pumpanen J, Gessler A, et al. Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol. 2012;32:776–798. doi: 10.1093/treephys/tps057. PubMed DOI

Henn MR, Chapela I. Ecophysiology of 13C and 15N isotopic fractionation in forest fungi and the roots of the saprotrophic-mycorrhizal divide. Oecologia. 2001;128:480–487. doi: 10.1007/s004420100680. PubMed DOI

Hobbie EA, Weber N, Trappe J. Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence. New Phytol. 2001;150:601–610. doi: 10.1046/j.1469-8137.2001.00134.x. DOI

Gebauer G, Dietrich P. Nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and Beech trees and of understorey vegetation including fungi. Isotopes Environ Health Stud. 1993;29:35–44. doi: 10.1080/10256019308046133. DOI

Kohzu A, Yoshioka T, Ando T. Natural 13C and 15N abundance of field-collected fungi and their ecological implications. New Phytol. 1999;144:323–330. doi: 10.1046/j.1469-8137.1999.00508.x. DOI

Ruess LR, Chamberlain PM. The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol Biochem. 2010;42:1898–1910. doi: 10.1016/j.soilbio.2010.07.020. DOI

Smith SE, Read DJ. Mycorrhizal Symbiosis. 3. Academic press Cambridge: Elsevier; 2008.

Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol. 2003;157:475–492. doi: 10.1046/j.1469-8137.2003.00704.x. PubMed DOI

Zieger SL, Holczinger A, Sommer J, Rath M, Kuzyakov Y, Polle A, et al. Beech trees fuel soil animal food webs via root-derived nitrogen. Basic Appl Ecol. 2017;22:28–35. doi: 10.1016/j.baae.2017.06.006. DOI

Klironomos JN, Kendrick WB. Palatability of microfungi to soil arthropods in relation to the functioning of arbuscular mycorrhizae. Biol Fertil Soils. 1996;21:43–52. doi: 10.1007/BF00335992. DOI

Klironomos JN, Bednarczuk EM, Neville J. Reproductive significance of feeding on saprobic and arbuscular mycorrhizal fungi by the collembolan, Folsomia candida. Funct Ecol. 1999;13:756–761. doi: 10.1046/j.1365-2435.1999.00379.x. DOI

Jonas JL, Wilson GWTT, White PM, Joern A. Consumption of mycorrhizal and saprophytic fungi by Collembola in grassland soils. Soil Biol Biochem. 2007;39:2594–2602. doi: 10.1016/j.soilbio.2007.05.004. DOI

Duhamel M, Pel R, Ooms A, Bücking H, Jansa J, Ellers J, et al. Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae? Ecology. 2013;94:2019–2029. doi: 10.1890/12-1943.1. PubMed DOI

Malmström A, Persson T. Responses of Collembola and Protura to tree girdling—some support for ectomycorrhizal feeding. Soil Org. 2011;83:279–285.

Díaz-Aguilar I, Quideau SA. Trophic ecology of mesostigmatan and oribatid mites in harvested and control coniferous and deciduous stands of the boreal mixedwood forest determined using 15N stable isotopes. Soil Biol Biochem. 2013;67:147–154. doi: 10.1016/j.soilbio.2013.08.019. DOI

Schneider K, Maraun M. Top-down control of soil microarthropods—evidence from a laboratory experiment. Soil Biol Biochem. 2009;41:170–175. doi: 10.1016/j.soilbio.2008.10.013. DOI

Haubert D, Häggblom MM, Scheu S, Ruess LR. Effects of fungal food quality and starvation on the fatty acid composition of Protaphorura fimata (Collembola) Comp Biochem Physiol Biochem Mol Biol. 2004;138:41–52. doi: 10.1016/j.cbpc.2004.02.009. PubMed DOI

Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, et al. Lipid transfer from plants to arbuscular mycorrhiza fungi. ELife. 2017;6(pii):e29107. doi: 10.7554/eLife.29107. PubMed DOI PMC

Laczko E, Boller T, Wiemken V. Lipids in roots of Pinus sylvestris seedlings and in mycelia of Pisolithus tinctorius during ectomycorrhiza formation: changes in fatty acid and sterol composition. Plant, Cell Environ. 2004;27:27–40. doi: 10.1046/j.0016-8025.2003.01122.x. DOI

Ruess LR, Häggblom MM, Zapata EJG, Dighton J. Fatty acids of fungi and nematodes—possible biomarkers in the soil food chain? Soil Biol Biochem. 2002;34:745–756. doi: 10.1016/S0038-0717(01)00231-0. DOI

Karliński L, Ravnskov S, Kieliszewska-Rokicka B, Larsen J. Fatty acid composition of various ectomycorrhizal fungi and ectomycorrhizas of Norway spruce. Soil Biol Biochem. 2007;39:854–866. doi: 10.1016/j.soilbio.2006.10.003. DOI

Tornberg K, Bååth E, Olsson S. Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biol Fertil Soils. 2003;37:190–197.

Olsson PA. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol. 1999;29:303–310. doi: 10.1111/j.1574-6941.1999.tb00621.x. DOI

Post DM. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 2002;83:703–718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2. DOI

Zieger SL, Ammerschubert S, Polle A, Scheu S. Root-derived carbon and nitrogen from beech and ash trees differentially fuel soil animal food webs of deciduous forests. PLoS ONE. 2017;12:e0189502. doi: 10.1371/journal.pone.0189502. PubMed DOI PMC

Böllmann J, Elmer M, Wöllecke J, Raidl S, Hüttl RF. Defensive strategies of soil fungi to prevent grazing by Folsomia candida (Collembola) Pedobiologia. 2010;53:107–114. doi: 10.1016/j.pedobi.2009.06.003. DOI

Scheu S, Setälä HM. Multitrophic interactions in decomposer food-webs. In: Tscharntke T, Hawkins BA, editors. Multitrophic Lev Interact. Cambridge: Cambridge University Press; 2002. pp. 223–264.

Digel C, Curtsdotter A, Riede J, Klarner B, Brose U. Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels. Oikos. 2014;123:1157–1172. doi: 10.1111/oik.00865. DOI

Maraun M, Martens H, Migge-Kleian S, Theenhaus A, Scheu S. Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol. 2003;39:85–95. doi: 10.1016/S1164-5563(03)00006-2. DOI

Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol. 2010;11:473–485. doi: 10.1016/j.baae.2010.07.009. DOI

Klarner B, Ehnes RB, Erdmann G, Eitzinger B, Pollierer MM, Maraun M, et al. Trophic shift of soil animal species with forest type as indicated by stable isotope analysis. Oikos. 2014;123:1173–1181. doi: 10.1111/j.1600-0706.2013.00939.x. DOI

Kempson D, Lloyd M, Ghelardi R. A new extractor for woodland litter. Pedobiologia. 1963;3:1–21.

Shrubovych J, Bernard EC. A key for the determination of European species of Eosentomon Berlese, 1909 (Protura, Eosentomata, Eosentomidae) Zookeys. 2018;742:1–12. doi: 10.3897/zookeys.742.22664. PubMed DOI PMC

Shrubovych J, Bartel D, Szucsich NU, Resch MC, Pass G. Morphological and genetic analysis of the Acerentomon doderoi group (Protura: Acerentomidae) with description of A. christiani sp. nov. PLoS ONE. 2016;11:0148033. doi: 10.1371/journal.pone.0148033. PubMed DOI PMC

Scheu S, Falca M. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia. 2000;123:285–296. doi: 10.1007/s004420051015. PubMed DOI

Albers D, Schaefer M, Scheu S. Incorporation of plant carbon into the soil animal food web of an arable system. Ecology. 2006;87:235–245. doi: 10.1890/04-1728. PubMed DOI

Valtanen K, Eissfeller V, Beyer F, Hertel D, Scheu S, Polle A. Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. Mycorrhiza. 2014;24:645–650. doi: 10.1007/s00572-014-0581-8. PubMed DOI

Ferlian O, Scheu S. Shifts in trophic interactions with forest type in soil generalist predators as indicated by complementary analyses of fatty acids and stable isotopes. Oikos. 2013;123:1182–1191. doi: 10.1111/j.1600-0706.2013.00848.x. DOI

Langel R, Dyckmans J. Combined (13) C and (15) N isotope analysis on small samples using a near-conventional elemental analyzer/isotope ratio mass spectrometer setup. Rapid Commun Mass Spectrom. 2014;28:1019–1022. doi: 10.1002/rcm.6878. PubMed DOI

Potapov AM, Tiunov AV, Scheu S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol Rev. 2018;94:37–59. doi: 10.1111/brv.12434. PubMed DOI

Trudell SA, Rygiewicz PT, Edmonds RL. Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests. New Phytol. 2004;164:317–335. doi: 10.1111/j.1469-8137.2004.01162.x. PubMed DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.7687484

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace