Characterized cis-FeV(O)(OH) intermediate mimics enzymatic oxidations in the gas phase

. 2019 Feb 22 ; 10 (1) : 901. [epub] 20190222

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30796210
Odkazy

PubMed 30796210
PubMed Central PMC6385299
DOI 10.1038/s41467-019-08668-2
PII: 10.1038/s41467-019-08668-2
Knihovny.cz E-zdroje

FeV(O)(OH) species have long been proposed to play a key role in a wide range of biomimetic and enzymatic oxidations, including as intermediates in arene dihydroxylation catalyzed by Rieske oxygenases. However, the inability to accumulate these intermediates in solution has thus far prevented their spectroscopic and chemical characterization. Thus, we use gas-phase ion spectroscopy and reactivity analysis to characterize the highly reactive [FeV(O)(OH)(5tips3tpa)]2+ (32+) complex. The results show that 32+ hydroxylates C-H bonds via a rebound mechanism involving two different ligands at the Fe center and dihydroxylates olefins and arenes. Hence, this study provides a direct evidence of FeV(O)(OH) species in non-heme iron catalysis. Furthermore, the reactivity of 32+ accounts for the unique behavior of Rieske oxygenases. The use of gas-phase ion characterization allows us to address issues related to highly reactive intermediates that other methods are unable to solve in the context of catalysis and enzymology.

Zobrazit více v PubMed

Hohenberger J, Ray K, Meyer K. The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes. Nat. Commun. 2012;3:720. doi: 10.1038/ncomms1718. PubMed DOI

McDonald AR, Que L. High-valent nonheme iron-oxo complexes: Synthesis, structure, and spectroscopy. Coord. Chem. Rev. 2013;257:414–428. doi: 10.1016/j.ccr.2012.08.002. DOI

Fillol JL, et al. Efficient water oxidation catalysts based on readily available iron coordination complexes. Nat. Chem. 2011;3:807. doi: 10.1038/nchem.1140. PubMed DOI

Huang X, Groves JT. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 2018;118:2491–2553. doi: 10.1021/acs.chemrev.7b00373. PubMed DOI PMC

Chakrabarty S, Austin RN, Deng D, Groves JT, Lipscomb JD. Radical intermediates in monooxygenase reactions of Rieske dioxygenases. J. Am. Chem. Soc. 2007;129:3514–3515. doi: 10.1021/ja068188v. PubMed DOI PMC

Barry SM, Challis GL. Mechanism and catalytic diversity of Rieske non-heme iron-dependent oxygenases. ACS Catal. 2013;3:2362–2370. doi: 10.1021/cs400087p. PubMed DOI PMC

Perry C, de los Santos EmmanuelLC, Alkhalaf LM, Challis GL. Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis. Nat. Prod. Rep. 2018;35:622–632. doi: 10.1039/C8NP00004B. PubMed DOI

de Oliveira FT, et al. Chemical and spectroscopic evidence for an FeV-oxo complex. Science. 2007;315:835. doi: 10.1126/science.1133417. PubMed DOI

Van Heuvelen KM, et al. One-electron oxidation of an oxoiron(IV) complex to form an [O═FeV═NR]+ center. Proc. Natl Acad. Sci.USA. 2012;109:11933. doi: 10.1073/pnas.1206457109. PubMed DOI PMC

Ghosh M, et al. Formation of a room temperature stable FeV(O) complex: reactivity toward unactivated C–H bonds. J. Am. Chem. Soc. 2014;136:9524–9527. doi: 10.1021/ja412537m. PubMed DOI PMC

Mills MR, Weitz AC, Hendrich MP, Ryabov AD, Collins TJ. NaClO-generated iron(IV)oxo and iron(V)oxo TAMLs in pure water. J. Am. Chem. Soc. 2016;138:13866–13869. doi: 10.1021/jacs.6b09572. PubMed DOI PMC

Collins TJ, Ryabov AD. Targeting of high-valent iron-TAML activators at hydrocarbons and beyond. Chem. Rev. 2017;117:9140–9162. doi: 10.1021/acs.chemrev.7b00034. PubMed DOI

Fan R, et al. Spectroscopic and DFT characterization of a highly reactive nonheme FeV–oxo intermediate. J. Am. Chem. Soc. 2018;140:3916–3928. doi: 10.1021/jacs.7b11400. PubMed DOI

Bauer I, Knölker HJ. Iron catalysis in organic synthesis. Chem. Rev. 2015;115:3170–3387. doi: 10.1021/cr500425u. PubMed DOI

Talsi EP, Bryliakov KP. Chemo- and stereoselective CH oxidations and epoxidations/cis-dihydroxylations with H2O2, catalyzed by non-heme iron and manganese complexes. Coord. Chem. Rev. 2012;256:1418–1434. doi: 10.1016/j.ccr.2012.04.005. DOI

Olivo G, Cussó O, Borrell M, Costas M. Oxidation of alkane and alkene moieties with biologically inspired nonheme iron catalysts and hydrogen peroxide: from free radicals to stereoselective transformations. J. Biol. Inorg. Chem. 2017;22:425–452. doi: 10.1007/s00775-016-1434-z. PubMed DOI

White MC, Zhao J. Aliphatic C–H oxidations for late-stage functionalization. J. Am. Chem. Soc. 2018;140:13988–14009. doi: 10.1021/jacs.8b05195. PubMed DOI PMC

Chen, K. & Que, J. L. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an FeV=O active species. J. Am. Chem. Soc. 123, 6327–6337 (2001). PubMed

Chen K, Costas M, Kim J, Tipton AK, Que L. Olefin cis-dihydroxylation versus epoxidation by non-heme iron catalysts: two faces of an FeIII−OOH coin. J. Am. Chem. Soc. 2002;124:3026–3035. doi: 10.1021/ja0120025. PubMed DOI

Mas-Ballesté R, Que L. Iron-catalyzed olefin epoxidation in the presence of acetic acid: insights into the nature of the metal-based oxidant. J. Am. Chem. Soc. 2007;129:15964–15972. doi: 10.1021/ja075115i. PubMed DOI

Bigi MA, Reed SA, White MC. Directed metal (oxo) aliphatic C–H hydroxylations: overriding substrate bias. J. Am. Chem. Soc. 2012;134:9721–9726. doi: 10.1021/ja301685r. PubMed DOI

Lyakin OY, Zima AM, Samsonenko DG, Bryliakov KP, Talsi EP. EPR spectroscopic detection of the elusive FeV═O intermediates in selective catalytic oxofunctionalizations of hydrocarbons mediated by biomimetic ferric complexes. ACS Catal. 2015;5:2702–2707. doi: 10.1021/acscatal.5b00169. DOI

Serrano-Plana J, et al. Exceedingly fast oxygen atom transfer to olefins via a catalytically competent nonheme iron species. Angew. Chem. Int. Ed. 2016;55:6310–6314. doi: 10.1002/anie.201601396. PubMed DOI

Serrano-Plana J, et al. Trapping a highly reactive nonheme iron intermediate that oxygenates strong C—H bonds with stereoretention. J. Am. Chem. Soc. 2015;137:15833–15842. doi: 10.1021/jacs.5b09904. PubMed DOI

Oloo WN, Fielding AJ, Que L. Rate-determining water-assisted O–O bond cleavage of an FeIII-OOH intermediate in a bio-inspired nonheme iron-catalyzed oxidation. J. Am. Chem. Soc. 2013;135:6438–6441. doi: 10.1021/ja402759c. PubMed DOI

Borrell M, Costas M. Mechanistically driven development of an iron catalyst for selective syn-dihydroxylation of alkenes with aqueous hydrogen peroxide. J. Am. Chem. Soc. 2017;139:12821–12829. doi: 10.1021/jacs.7b07909. PubMed DOI

Borrell M, Costas M. Greening oxidation catalysis: iron catalyzed alkene syn-dihydroxylation with aqueous hydrogen peroxide in green solvents. ACS Sustain. Chem. Eng. 2018;6:8410–8416. doi: 10.1021/acssuschemeng.8b00542. DOI

Kolb HC, VanNieuwenhze MS, Sharpless KB. Catalytic asymmetric dihydroxylation. Chem. Rev. 1994;94:2483–2547. doi: 10.1021/cr00032a009. DOI

Shing TKM, Tam EKW, Tai VWF, Chung IHF, Jiang Q. Ruthenium-catalyzed cis-dihydroxylation of alkenes: scope and limitations. Chem. Eur. J. 1996;2:50–57. doi: 10.1002/chem.19960020111. DOI

Prat I, et al. Observation of Fe(V)=O using variable-temperature mass spectrometry and its enzyme-like C–H and C=C oxidation reactions. Nat. Chem. 2011;3:788–793. doi: 10.1038/nchem.1132. PubMed DOI

Xu S, et al. Detection of a transient FeV(O)(OH) species involved in olefin oxidation by a bio-inspired non-haem iron catalyst. Chem. Commun. 2018;54:8701–8704. doi: 10.1039/C8CC03990A. PubMed DOI

Roithová J, Gray A, Andris E, Jašík J, Gerlich D. Helium tagging infrared photodissociation spectroscopy of reactive ions. Acc. Chem. Res. 2016;49:223–230. doi: 10.1021/acs.accounts.5b00489. PubMed DOI

Bassan A, Blomberg MRA, Siegbahn PEM, Que L. Two faces of a biomimetic non-heme HO-FeV=O oxidant: Olefin epoxidation versus cis-dihydroxylation. Angew. Chem. Int. Ed. 2005;44:2939–2941. doi: 10.1002/anie.200463072. PubMed DOI

Bassan A, Blomberg MRA, Siegbahn PEM, Lawrence Que J. A density functional study on a biomimetic non-heme iron catalyst: insights into alkane hydroxylation by a formally HOFeVO oxidant. Chem. Eur. J. 2005;11:692–705. doi: 10.1002/chem.200400383. PubMed DOI

Roy L. Theoretical insights into the nature of oxidant and mechanism in the regioselective syn-dihydroxylation of an alkene with a Rieske oxygenase inspired iron catalyst. ChemCamChem. 2018;10:3683–3688. doi: 10.1002/cctc.201800799. DOI

Andris E, et al. Chasing the evasive Fe═O stretch and the spin state of the iron(IV)–Oxo complexes by photodissociation spectroscopy. J. Am. Chem. Soc. 2017;139:2757–2765. doi: 10.1021/jacs.6b12291. PubMed DOI

Pattanayak S, et al. Spectroscopic and reactivity comparisons of a pair of bTAML complexes with FeV═O and FeIV═O units. Inorg. Chem. 2017;56:6352–6361. doi: 10.1021/acs.inorgchem.7b00448. PubMed DOI PMC

Ho RYN, Roelfes G, Feringa BL, Que L. Raman evidence for a weakened O−O bond in mononuclear low-spin iron(III)−hydroperoxides. J. Am. Chem. Soc. 1999;121:264–265. doi: 10.1021/ja982812p. DOI

Roelfes G, et al. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry. Inorg. Chem. 2003;42:2639–2653. doi: 10.1021/ic034065p. PubMed DOI

Bassan A, Blomberg MRA, Siegbahn PEM, Que L., Jr. A density functional study of O-O bond cleavage for a biomimetic non-heme iron complex demonstrating an FeV-intermediate. J. Am. Chem. Soc. 2002;124:11056–11063. doi: 10.1021/ja026488g. PubMed DOI

Mondal B, Neese F, Bill E, Ye S. Electronic structure contributions of non-heme oxo-iron(V) complexes to the reactivity. J. Am. Chem. Soc. 2018;140:9531–9544. doi: 10.1021/jacs.8b04275. PubMed DOI

Oloo WN, et al. Identification of a low-spin acylperoxoiron(III) intermediate in bio-inspired non-heme iron-catalysed oxidations. Nat. Commun. 2014;5:3046. doi: 10.1038/ncomms4046. PubMed DOI

Ducháčková L, Roithová J. The interaction of zinc(II) and hydroxamic acids and a metal-triggered lossen rearrangement. Chem. Eur. J. 2009;15:13399–13405. doi: 10.1002/chem.200901645. PubMed DOI

Jašíková L, Roithová J. Interaction of the gold(I) cation Au(PMe3)+ with unsaturated hydrocarbons. Organometallics. 2012;31:1935–1942. doi: 10.1021/om2012387. DOI

Park MJ, Lee J, Suh Y, Kim J, Nam W. Reactivities of mononuclear non-heme iron intermediates including evidence that iron(III)−hydroperoxo species is a sluggish oxidant. J. Am. Chem. Soc. 2006;128:2630–2634. doi: 10.1021/ja055709q. PubMed DOI

Kuck D. Half a century of scrambling in organic ions: complete, incomplete, progressive and composite atom interchange11Dedicated to Seymour Meyerson on the occasion of his 85th birthday. Int. J. Mass. Spectrom. 2002;213:101–144. doi: 10.1016/S1387-3806(01)00533-4. DOI

Roithová, J., Ricketts, C. & Schröder, D. Reactions of the dications C7H62+ C7H72+, and C7H82+ with methane: predominance of doubly charged intermediates. Int. J. Mass. Spectrom. 280, 32–37 (2009).

Xue XS, Ji P, Zhou B, Cheng JP. The essential role of bond energetics in C–H activation/functionalization. Chem. Rev. 2017;117:8622–8648. doi: 10.1021/acs.chemrev.6b00664. PubMed DOI

Mathur D. Multiply charged molecules. Phys. Rep. 1993;225:193–272. doi: 10.1016/0370-1573(93)90006-Y. DOI

Sainna MA, et al. A comprehensive test set of epoxidation rate constants for iron(iv)–oxo porphyrin cation radical complexes. Chem. Sci. 2015;6:1516–1529. doi: 10.1039/C4SC02717E. PubMed DOI PMC

Cockett MCR, Ozeki H, Okuyama K, Kimura K. Vibronic coupling in the ground cationic state of naphthalene: a laser threshold photoelectron [zero kinetic energy (ZEKE)‐photoelectron] spectroscopic study. J. Chem. Phys. 1993;98:7763–7772. doi: 10.1063/1.464584. DOI

Chiavarino B, et al. Probing the compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines. J. Am. Chem. Soc. 2008;130:3208–3217. doi: 10.1021/ja077286t. PubMed DOI

Feng, Y., Ke, C.-Y., Xue, G. & Que, L. Jr. Bio-inspired arene cis-dihydroxylation by a non-haem iron catalyst modeling the action of naphthalene dioxygenase. Chem. Commun. 10.1039/B817222F (2008). PubMed

Cho KB, Hirao H, Shaik S, Nam W. To rebound or dissociate? This is the mechanistic question in C–H hydroxylation by heme and nonheme metal–oxo complexes. Chem. Soc. Rev. 2016;45:1197–1210. doi: 10.1039/C5CS00566C. PubMed DOI

Andris E, Jašík J, Gómez L, Costas M, Roithová J. Spectroscopic characterization and reactivity of triplet and quintet iron(IV) oxo complexes in the gas phase. Angew. Chem. Int. Ed. 2016;128:3701–3705. doi: 10.1002/ange.201511374. PubMed DOI PMC

Company A, et al. Alkane hydroxylation by a nonheme iron catalyst that challenges the heme paradigm for oxygenase action. J. Am. Chem. Soc. 2007;129:15766–15767. doi: 10.1021/ja077761n. PubMed DOI

Wong SD, et al. Elucidation of the Fe(iv)=O intermediate in the catalytic cycle of the halogenase SyrB2. Nature. 2013;499:320. doi: 10.1038/nature12304. PubMed DOI PMC

Matthews ML, et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 2014;10:209–215. doi: 10.1038/nchembio.1438. PubMed DOI PMC

Jašík J, Žabka J, Roithová J, Gerlich D. Infrared spectroscopy of trapped molecular dications below 4K. Int. J. Mass. Spectrom. 2013;354-355:204–210. doi: 10.1016/j.ijms.2013.06.007. DOI

Jašík J, Navrátil R, Němec I, Roithová J. Infrared and visible photodissociation spectra of rhodamine ions at 3K in the gas phase. J. Phys. Chem. A. 2015;119:12648–12655. doi: 10.1021/acs.jpca.5b08462. PubMed DOI

Gaussian 16 Rev. A.03 (Wallingford, CT, 2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...