Characterized cis-FeV(O)(OH) intermediate mimics enzymatic oxidations in the gas phase
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30796210
PubMed Central
PMC6385299
DOI
10.1038/s41467-019-08668-2
PII: 10.1038/s41467-019-08668-2
Knihovny.cz E-zdroje
- MeSH
- katalýza MeSH
- oxidace-redukce * MeSH
- oxygenasy metabolismus MeSH
- sloučeniny železa chemie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oxygenasy MeSH
- sloučeniny železa MeSH
- železo MeSH
FeV(O)(OH) species have long been proposed to play a key role in a wide range of biomimetic and enzymatic oxidations, including as intermediates in arene dihydroxylation catalyzed by Rieske oxygenases. However, the inability to accumulate these intermediates in solution has thus far prevented their spectroscopic and chemical characterization. Thus, we use gas-phase ion spectroscopy and reactivity analysis to characterize the highly reactive [FeV(O)(OH)(5tips3tpa)]2+ (32+) complex. The results show that 32+ hydroxylates C-H bonds via a rebound mechanism involving two different ligands at the Fe center and dihydroxylates olefins and arenes. Hence, this study provides a direct evidence of FeV(O)(OH) species in non-heme iron catalysis. Furthermore, the reactivity of 32+ accounts for the unique behavior of Rieske oxygenases. The use of gas-phase ion characterization allows us to address issues related to highly reactive intermediates that other methods are unable to solve in the context of catalysis and enzymology.
Zobrazit více v PubMed
Hohenberger J, Ray K, Meyer K. The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes. Nat. Commun. 2012;3:720. doi: 10.1038/ncomms1718. PubMed DOI
McDonald AR, Que L. High-valent nonheme iron-oxo complexes: Synthesis, structure, and spectroscopy. Coord. Chem. Rev. 2013;257:414–428. doi: 10.1016/j.ccr.2012.08.002. DOI
Fillol JL, et al. Efficient water oxidation catalysts based on readily available iron coordination complexes. Nat. Chem. 2011;3:807. doi: 10.1038/nchem.1140. PubMed DOI
Huang X, Groves JT. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 2018;118:2491–2553. doi: 10.1021/acs.chemrev.7b00373. PubMed DOI PMC
Chakrabarty S, Austin RN, Deng D, Groves JT, Lipscomb JD. Radical intermediates in monooxygenase reactions of Rieske dioxygenases. J. Am. Chem. Soc. 2007;129:3514–3515. doi: 10.1021/ja068188v. PubMed DOI PMC
Barry SM, Challis GL. Mechanism and catalytic diversity of Rieske non-heme iron-dependent oxygenases. ACS Catal. 2013;3:2362–2370. doi: 10.1021/cs400087p. PubMed DOI PMC
Perry C, de los Santos EmmanuelLC, Alkhalaf LM, Challis GL. Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis. Nat. Prod. Rep. 2018;35:622–632. doi: 10.1039/C8NP00004B. PubMed DOI
de Oliveira FT, et al. Chemical and spectroscopic evidence for an FeV-oxo complex. Science. 2007;315:835. doi: 10.1126/science.1133417. PubMed DOI
Van Heuvelen KM, et al. One-electron oxidation of an oxoiron(IV) complex to form an [O═FeV═NR]+ center. Proc. Natl Acad. Sci.USA. 2012;109:11933. doi: 10.1073/pnas.1206457109. PubMed DOI PMC
Ghosh M, et al. Formation of a room temperature stable FeV(O) complex: reactivity toward unactivated C–H bonds. J. Am. Chem. Soc. 2014;136:9524–9527. doi: 10.1021/ja412537m. PubMed DOI PMC
Mills MR, Weitz AC, Hendrich MP, Ryabov AD, Collins TJ. NaClO-generated iron(IV)oxo and iron(V)oxo TAMLs in pure water. J. Am. Chem. Soc. 2016;138:13866–13869. doi: 10.1021/jacs.6b09572. PubMed DOI PMC
Collins TJ, Ryabov AD. Targeting of high-valent iron-TAML activators at hydrocarbons and beyond. Chem. Rev. 2017;117:9140–9162. doi: 10.1021/acs.chemrev.7b00034. PubMed DOI
Fan R, et al. Spectroscopic and DFT characterization of a highly reactive nonheme FeV–oxo intermediate. J. Am. Chem. Soc. 2018;140:3916–3928. doi: 10.1021/jacs.7b11400. PubMed DOI
Bauer I, Knölker HJ. Iron catalysis in organic synthesis. Chem. Rev. 2015;115:3170–3387. doi: 10.1021/cr500425u. PubMed DOI
Talsi EP, Bryliakov KP. Chemo- and stereoselective CH oxidations and epoxidations/cis-dihydroxylations with H2O2, catalyzed by non-heme iron and manganese complexes. Coord. Chem. Rev. 2012;256:1418–1434. doi: 10.1016/j.ccr.2012.04.005. DOI
Olivo G, Cussó O, Borrell M, Costas M. Oxidation of alkane and alkene moieties with biologically inspired nonheme iron catalysts and hydrogen peroxide: from free radicals to stereoselective transformations. J. Biol. Inorg. Chem. 2017;22:425–452. doi: 10.1007/s00775-016-1434-z. PubMed DOI
White MC, Zhao J. Aliphatic C–H oxidations for late-stage functionalization. J. Am. Chem. Soc. 2018;140:13988–14009. doi: 10.1021/jacs.8b05195. PubMed DOI PMC
Chen, K. & Que, J. L. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an FeV=O active species. J. Am. Chem. Soc. 123, 6327–6337 (2001). PubMed
Chen K, Costas M, Kim J, Tipton AK, Que L. Olefin cis-dihydroxylation versus epoxidation by non-heme iron catalysts: two faces of an FeIII−OOH coin. J. Am. Chem. Soc. 2002;124:3026–3035. doi: 10.1021/ja0120025. PubMed DOI
Mas-Ballesté R, Que L. Iron-catalyzed olefin epoxidation in the presence of acetic acid: insights into the nature of the metal-based oxidant. J. Am. Chem. Soc. 2007;129:15964–15972. doi: 10.1021/ja075115i. PubMed DOI
Bigi MA, Reed SA, White MC. Directed metal (oxo) aliphatic C–H hydroxylations: overriding substrate bias. J. Am. Chem. Soc. 2012;134:9721–9726. doi: 10.1021/ja301685r. PubMed DOI
Lyakin OY, Zima AM, Samsonenko DG, Bryliakov KP, Talsi EP. EPR spectroscopic detection of the elusive FeV═O intermediates in selective catalytic oxofunctionalizations of hydrocarbons mediated by biomimetic ferric complexes. ACS Catal. 2015;5:2702–2707. doi: 10.1021/acscatal.5b00169. DOI
Serrano-Plana J, et al. Exceedingly fast oxygen atom transfer to olefins via a catalytically competent nonheme iron species. Angew. Chem. Int. Ed. 2016;55:6310–6314. doi: 10.1002/anie.201601396. PubMed DOI
Serrano-Plana J, et al. Trapping a highly reactive nonheme iron intermediate that oxygenates strong C—H bonds with stereoretention. J. Am. Chem. Soc. 2015;137:15833–15842. doi: 10.1021/jacs.5b09904. PubMed DOI
Oloo WN, Fielding AJ, Que L. Rate-determining water-assisted O–O bond cleavage of an FeIII-OOH intermediate in a bio-inspired nonheme iron-catalyzed oxidation. J. Am. Chem. Soc. 2013;135:6438–6441. doi: 10.1021/ja402759c. PubMed DOI
Borrell M, Costas M. Mechanistically driven development of an iron catalyst for selective syn-dihydroxylation of alkenes with aqueous hydrogen peroxide. J. Am. Chem. Soc. 2017;139:12821–12829. doi: 10.1021/jacs.7b07909. PubMed DOI
Borrell M, Costas M. Greening oxidation catalysis: iron catalyzed alkene syn-dihydroxylation with aqueous hydrogen peroxide in green solvents. ACS Sustain. Chem. Eng. 2018;6:8410–8416. doi: 10.1021/acssuschemeng.8b00542. DOI
Kolb HC, VanNieuwenhze MS, Sharpless KB. Catalytic asymmetric dihydroxylation. Chem. Rev. 1994;94:2483–2547. doi: 10.1021/cr00032a009. DOI
Shing TKM, Tam EKW, Tai VWF, Chung IHF, Jiang Q. Ruthenium-catalyzed cis-dihydroxylation of alkenes: scope and limitations. Chem. Eur. J. 1996;2:50–57. doi: 10.1002/chem.19960020111. DOI
Prat I, et al. Observation of Fe(V)=O using variable-temperature mass spectrometry and its enzyme-like C–H and C=C oxidation reactions. Nat. Chem. 2011;3:788–793. doi: 10.1038/nchem.1132. PubMed DOI
Xu S, et al. Detection of a transient FeV(O)(OH) species involved in olefin oxidation by a bio-inspired non-haem iron catalyst. Chem. Commun. 2018;54:8701–8704. doi: 10.1039/C8CC03990A. PubMed DOI
Roithová J, Gray A, Andris E, Jašík J, Gerlich D. Helium tagging infrared photodissociation spectroscopy of reactive ions. Acc. Chem. Res. 2016;49:223–230. doi: 10.1021/acs.accounts.5b00489. PubMed DOI
Bassan A, Blomberg MRA, Siegbahn PEM, Que L. Two faces of a biomimetic non-heme HO-FeV=O oxidant: Olefin epoxidation versus cis-dihydroxylation. Angew. Chem. Int. Ed. 2005;44:2939–2941. doi: 10.1002/anie.200463072. PubMed DOI
Bassan A, Blomberg MRA, Siegbahn PEM, Lawrence Que J. A density functional study on a biomimetic non-heme iron catalyst: insights into alkane hydroxylation by a formally HOFeVO oxidant. Chem. Eur. J. 2005;11:692–705. doi: 10.1002/chem.200400383. PubMed DOI
Roy L. Theoretical insights into the nature of oxidant and mechanism in the regioselective syn-dihydroxylation of an alkene with a Rieske oxygenase inspired iron catalyst. ChemCamChem. 2018;10:3683–3688. doi: 10.1002/cctc.201800799. DOI
Andris E, et al. Chasing the evasive Fe═O stretch and the spin state of the iron(IV)–Oxo complexes by photodissociation spectroscopy. J. Am. Chem. Soc. 2017;139:2757–2765. doi: 10.1021/jacs.6b12291. PubMed DOI
Pattanayak S, et al. Spectroscopic and reactivity comparisons of a pair of bTAML complexes with FeV═O and FeIV═O units. Inorg. Chem. 2017;56:6352–6361. doi: 10.1021/acs.inorgchem.7b00448. PubMed DOI PMC
Ho RYN, Roelfes G, Feringa BL, Que L. Raman evidence for a weakened O−O bond in mononuclear low-spin iron(III)−hydroperoxides. J. Am. Chem. Soc. 1999;121:264–265. doi: 10.1021/ja982812p. DOI
Roelfes G, et al. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry. Inorg. Chem. 2003;42:2639–2653. doi: 10.1021/ic034065p. PubMed DOI
Bassan A, Blomberg MRA, Siegbahn PEM, Que L., Jr. A density functional study of O-O bond cleavage for a biomimetic non-heme iron complex demonstrating an FeV-intermediate. J. Am. Chem. Soc. 2002;124:11056–11063. doi: 10.1021/ja026488g. PubMed DOI
Mondal B, Neese F, Bill E, Ye S. Electronic structure contributions of non-heme oxo-iron(V) complexes to the reactivity. J. Am. Chem. Soc. 2018;140:9531–9544. doi: 10.1021/jacs.8b04275. PubMed DOI
Oloo WN, et al. Identification of a low-spin acylperoxoiron(III) intermediate in bio-inspired non-heme iron-catalysed oxidations. Nat. Commun. 2014;5:3046. doi: 10.1038/ncomms4046. PubMed DOI
Ducháčková L, Roithová J. The interaction of zinc(II) and hydroxamic acids and a metal-triggered lossen rearrangement. Chem. Eur. J. 2009;15:13399–13405. doi: 10.1002/chem.200901645. PubMed DOI
Jašíková L, Roithová J. Interaction of the gold(I) cation Au(PMe3)+ with unsaturated hydrocarbons. Organometallics. 2012;31:1935–1942. doi: 10.1021/om2012387. DOI
Park MJ, Lee J, Suh Y, Kim J, Nam W. Reactivities of mononuclear non-heme iron intermediates including evidence that iron(III)−hydroperoxo species is a sluggish oxidant. J. Am. Chem. Soc. 2006;128:2630–2634. doi: 10.1021/ja055709q. PubMed DOI
Kuck D. Half a century of scrambling in organic ions: complete, incomplete, progressive and composite atom interchange11Dedicated to Seymour Meyerson on the occasion of his 85th birthday. Int. J. Mass. Spectrom. 2002;213:101–144. doi: 10.1016/S1387-3806(01)00533-4. DOI
Roithová, J., Ricketts, C. & Schröder, D. Reactions of the dications C7H62+ C7H72+, and C7H82+ with methane: predominance of doubly charged intermediates. Int. J. Mass. Spectrom. 280, 32–37 (2009).
Xue XS, Ji P, Zhou B, Cheng JP. The essential role of bond energetics in C–H activation/functionalization. Chem. Rev. 2017;117:8622–8648. doi: 10.1021/acs.chemrev.6b00664. PubMed DOI
Mathur D. Multiply charged molecules. Phys. Rep. 1993;225:193–272. doi: 10.1016/0370-1573(93)90006-Y. DOI
Sainna MA, et al. A comprehensive test set of epoxidation rate constants for iron(iv)–oxo porphyrin cation radical complexes. Chem. Sci. 2015;6:1516–1529. doi: 10.1039/C4SC02717E. PubMed DOI PMC
Cockett MCR, Ozeki H, Okuyama K, Kimura K. Vibronic coupling in the ground cationic state of naphthalene: a laser threshold photoelectron [zero kinetic energy (ZEKE)‐photoelectron] spectroscopic study. J. Chem. Phys. 1993;98:7763–7772. doi: 10.1063/1.464584. DOI
Chiavarino B, et al. Probing the compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines. J. Am. Chem. Soc. 2008;130:3208–3217. doi: 10.1021/ja077286t. PubMed DOI
Feng, Y., Ke, C.-Y., Xue, G. & Que, L. Jr. Bio-inspired arene cis-dihydroxylation by a non-haem iron catalyst modeling the action of naphthalene dioxygenase. Chem. Commun. 10.1039/B817222F (2008). PubMed
Cho KB, Hirao H, Shaik S, Nam W. To rebound or dissociate? This is the mechanistic question in C–H hydroxylation by heme and nonheme metal–oxo complexes. Chem. Soc. Rev. 2016;45:1197–1210. doi: 10.1039/C5CS00566C. PubMed DOI
Andris E, Jašík J, Gómez L, Costas M, Roithová J. Spectroscopic characterization and reactivity of triplet and quintet iron(IV) oxo complexes in the gas phase. Angew. Chem. Int. Ed. 2016;128:3701–3705. doi: 10.1002/ange.201511374. PubMed DOI PMC
Company A, et al. Alkane hydroxylation by a nonheme iron catalyst that challenges the heme paradigm for oxygenase action. J. Am. Chem. Soc. 2007;129:15766–15767. doi: 10.1021/ja077761n. PubMed DOI
Wong SD, et al. Elucidation of the Fe(iv)=O intermediate in the catalytic cycle of the halogenase SyrB2. Nature. 2013;499:320. doi: 10.1038/nature12304. PubMed DOI PMC
Matthews ML, et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 2014;10:209–215. doi: 10.1038/nchembio.1438. PubMed DOI PMC
Jašík J, Žabka J, Roithová J, Gerlich D. Infrared spectroscopy of trapped molecular dications below 4K. Int. J. Mass. Spectrom. 2013;354-355:204–210. doi: 10.1016/j.ijms.2013.06.007. DOI
Jašík J, Navrátil R, Němec I, Roithová J. Infrared and visible photodissociation spectra of rhodamine ions at 3K in the gas phase. J. Phys. Chem. A. 2015;119:12648–12655. doi: 10.1021/acs.jpca.5b08462. PubMed DOI
Gaussian 16 Rev. A.03 (Wallingford, CT, 2016).