A Serial 10-Year Follow-Up Study of Atrophied Brain Lesion Volume and Disability Progression in Patients with Relapsing-Remitting MS
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30819766
PubMed Central
PMC7028678
DOI
10.3174/ajnr.a5987
PII: ajnr.A5987
Knihovny.cz E-zdroje
- MeSH
- atrofie diagnostické zobrazování patologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mozek diagnostické zobrazování patologie MeSH
- následné studie MeSH
- progrese nemoci MeSH
- recidiva MeSH
- relabující-remitující roztroušená skleróza diagnostické zobrazování patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND PURPOSE: Disappearance of T2 lesions into CSF spaces is frequently observed in patients with MS. Our aim was to investigate temporal changes of cumulative atrophied brain T2 lesion volume and 10-year confirmed disability progression. MATERIALS AND METHODS: We studied 176 patients with relapsing-remitting MS who underwent MR imaging at baseline, 6 months, and then yearly for 10 years. Occurrence of new/enlarging T2 lesions, changes in T2 lesion volume, and whole-brain, cortical and ventricle volumes were assessed yearly between baseline and 10 years. Atrophied T2 lesion volume was calculated by combining baseline lesion masks with follow-up CSF partial volume maps. Ten-year confirmed disability progression was confirmed after 48 weeks. ANCOVA detected MR imaging outcome differences in stable (n = 76) and confirmed disability progression (n = 100) groups at different time points; hierarchic regression determined the unique additive variance explained by atrophied T2 lesion volume regarding the association with confirmed disability progression, in addition to other MR imaging metrics. Cox regression investigated the association of early MR imaging outcome changes and time to development of confirmed disability progression. RESULTS: The separation of stable-versus-confirmed disability progression groups became significant even in the first 6 months for atrophied T2 lesion volume (140% difference, Cohen d = 0.54, P = .004) and remained significant across all time points (P ≤ .007). The hierarchic model, including all other MR imaging outcomes during 10 years predicting confirmed disability progression, improved significantly after adding atrophied T2 lesion volume (R 2 = 0.27, R 2 change 0.11, P = .009). In Cox regression, atrophied T2 lesion volume in 0-6 months (hazard ratio = 4.23, P = .04) and 0-12 months (hazard ratio = 2.41, P = .022) was the only significant MR imaging predictor of time to confirmed disability progression. CONCLUSIONS: Atrophied T2 lesion volume is a robust and early marker of disability progression in relapsing-remitting MS.
Zobrazit více v PubMed
Poloni G, Minagar A, Haacke EM, et al. . Recent developments in imaging of multiple sclerosis. Neurologist 2011;17:185–204 10.1097/NRL.0b013e31821a2643 PubMed DOI
Bar-Zohar D, Agosta F, Goldstaub D, et al. . Magnetic resonance imaging metrics and their correlation with clinical outcomes in multiple sclerosis: a review of the literature and future perspectives. Mult Scler 2008;14:719–27 10.1177/1352458507088102 PubMed DOI
Sormani MP, Bruzzi P, Comi G, et al. . MRI metrics as surrogate markers for clinical relapse rate in relapsing-remitting MS patients. Neurology 2002;58:417–21 10.1212/WNL.58.3.417 PubMed DOI
O'Riordan JI, Thompson AJ, Kingsley DP, et al. . The prognostic value of brain MRI in clinically isolated syndromes of the CNS. A 10-year follow-up. Brain 1998;121(Pt 3):495–503 10.1093/brain/121.3.495 PubMed DOI
Rudick RA, Lee JC, Simon J, et al. . Significance of T2 lesions in multiple sclerosis: a 13-year longitudinal study. Ann Neurol 2006;60:236–42 10.1002/ana.20883 PubMed DOI
Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 2002;15:239–45 10.1097/00019052-200206000-00003 PubMed DOI
Sailer M, Losseff NA, Wang L, et al. . T1 lesion load and cerebral atrophy as a marker for clinical progression in patients with multiple sclerosis: a prospective 18 months follow-up study. Eur J Neurol 2001;8:37–42 10.1046/j.1468-1331.2001.00147.x PubMed DOI
Zivadinov R, Uher T, Hagemeier J, et al. . A serial 10-year follow-up study of brain atrophy and disability progression in RRMS patients. Mult Scler 2016;22:1709–18 10.1177/1352458516629769 PubMed DOI
Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 2006;5:158–70 10.1016/S1474-4422(06)70349-0 PubMed DOI
De Stefano N, Airas L, Grigoriadis N, et al. . Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs 2014;28:147–56 10.1007/s40263-014-0140-z PubMed DOI
Miller DH, Barkhof F, Frank JA, et al. . Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 2002;125:1676–95 10.1093/brain/awf177 PubMed DOI
Zivadinov R, Jakimovski D, Gandhi S, et al. . Clinical relevance of brain atrophy assessment in multiple sclerosis: implications for its use in a clinical routine. Expert Rev Neurother 2016;16:777–93 10.1080/14737175.2016.1181543 PubMed DOI
Dwyer MG, Bergsland N, Ramasamy DP, et al. . Atrophied brain lesion volume: a new imaging biomarker in multiple sclerosis. J Neuroimaging 2018;28:490–95 10.1111/jon.12527 PubMed DOI
Zivadinov R, Bergsland N, Dwyer MG. Atrophied brain lesion volume, a magnetic resonance imaging biomarker for monitoring neurodegenerative changes in multiple sclerosis. Quant Imaging Med Surg 2018;8:979–83 10.21037/qims.2018.11.01 PubMed DOI PMC
Pardini M, Sudre CH, Prados F, et al. . Relationship of grey and white matter abnormalities with distance from the surface of the brain in multiple sclerosis. J Neurol Neurosurg Psychiatry 2016;87:1212–17 10.1136/jnnp-2016-313979 PubMed DOI
Havrdova E, Zivadinov R, Krasensky J, et al. . Randomized study of interferon beta-1a, low-dose azathioprine, and low-dose corticosteroids in multiple sclerosis. Mult Scler 2009;15:965–76 10.1177/1352458509105229 PubMed DOI
Horakova D, Cox JL, Havrdova E, et al. . Evolution of different MRI measures in patients with active relapsing-remitting multiple sclerosis over 2 and 5 years: a case-control study. J Neurol Neurosurg Psychiatry 2008;79:407–14 10.1136/jnnp.2007.120378 PubMed DOI
Zivadinov R, Bergsland N, Dolezal O, et al. . Evolution of cortical and thalamus atrophy and disability progression in early relapsing-remitting MS during 5 years. AJNR Am J Neuroradiol 2013;34:1931–39 10.3174/ajnr.A3503 PubMed DOI PMC
Tustison NJ, Avants BB, Cook PA, et al. . N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010;29:1310–20 10.1109/TMI.2010.2046908 PubMed DOI PMC
Nyúl LG, Udupa JK, Zhang X. New variants of a method of MRI scale standardization. IEEE Trans Med Imaging 2000;19:143–50 10.1109/42.836373 PubMed DOI
Smith SM, Jenkinson M, Woolrich MW, et al. . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23(Suppl 1):S208–19 10.1016/j.neuroimage.2004.07.051 PubMed DOI
Gelineau-Morel R, Tomassini V, Jenkinson M, et al. . The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis. Hum Brain Mapp 2012;33:2802–14 10.1002/hbm.21402 PubMed DOI PMC
Benjamini Y, Drai D, Elmer G, et al. . Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001;125:279–84 10.1016/S0166-4328(01)00297-2 PubMed DOI
Giacomini PS, Levesque IR, Ribeiro L, et al. . Measuring demyelination and remyelination in acute multiple sclerosis lesion voxels. Arch Neurol 2009;66:375–81 10.1001/archneurol.2008.578 PubMed DOI
Mallik S, Samson RS, Wheeler-Kingshott CA, et al. . Imaging outcomes for trials of remyelination in multiple sclerosis. J Neurol Neurosurg Psychiatry 2014;85:1396–404 10.1136/jnnp-2014-307650 PubMed DOI PMC
Zivadinov R. Can imaging techniques measure neuroprotection and remyelination in multiple sclerosis? Neurology 2007;68:S72–82; discussion S91–96 10.1212/01.wnl.0000275236.51129.d2 PubMed DOI
Trapp BD, Ransohoff R, Rudick R. Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 1999;12:295–302 10.1097/00019052-199906000-00008 PubMed DOI
Uher T, Vaneckova M, Sobisek L, et al. . Combining clinical and magnetic resonance imaging markers enhances prediction of 12-year disability in multiple sclerosis. Mult Scler 2017;23:51–61 10.1177/1352458516642314 PubMed DOI
Zivadinov R, Havrdová E, Bergsland N, et al. . Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology 2013;268:831–41 10.1148/radiol.13122424 PubMed DOI
Zivadinov R, Stosic M, Cox JL, et al. . The place of conventional MRI and newly emerging MRI techniques in monitoring different aspects of treatment outcome. J Neurol 2008;255(Suppl 1):61–74 10.1007/s00415-008-1009-1 PubMed DOI
Geurts JJ, Pouwels PJ, Uitdehaag BM, et al. . Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 2005;236:254–60 10.1148/radiol.2361040450 PubMed DOI
Nielsen AS, Kinkel RP, Madigan N, et al. . Contribution of cortical lesion subtypes at 7T MRI to physical and cognitive performance in MS. Neurology 2013;81:641–49 10.1212/WNL.0b013e3182a08ce8 PubMed DOI PMC
Yao B, Ikonomidou VN, Cantor FK, et al. . Heterogeneity of multiple sclerosis white matter lesions detected with T2*-weighted imaging at 7.0 Tesla. J Neuroimaging 2015;25:799–806 10.1111/jon.12193 PubMed DOI PMC
van Walderveen MA, Barkhof F, Pouwels PJ, et al. . Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann Neurol 1999;46:79–87 10.1002/1531-8249(199907)46:1<79::AID-ANA12>3.0.CO;2-9 PubMed DOI
Zivadinov R, Reder AT, Filippi M, et al. . Mechanisms of action of disease-modifying agents and brain volume changes in multiple sclerosis. Neurology 2008;71:136–44 10.1212/01.wnl.0000316810.01120.05 PubMed DOI
Assessing disease progression and treatment response in progressive multiple sclerosis