Secrecy Performance of TAS/SC-Based Multi-Hop Harvest-to-Transmit Cognitive WSNs Under Joint Constraint of Interference and Hardware Imperfection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2019/41and 102.04-2017.317, respectively.
the grant SGS reg. No. SP2019/41 conducted at VSB Technical University of Ostrava, Czech Republic, and Vietnam National Foundation for Science and Technology Development (NAFOSTED)
PubMed
30866513
PubMed Central
PMC6427423
DOI
10.3390/s19051160
PII: s19051160
Knihovny.cz E-zdroje
- Klíčová slova
- cognitive radio, energy harvesting, hardware impairments, multi-hop wireless sensor networks, physical-layer security, selection combining, transmit antenna selection,
- Publikační typ
- časopisecké články MeSH
In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.
Zobrazit více v PubMed
Ledwaba L.P.I., Hancke G.P., Venter H.S., Isaac S.J. Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices. IEEE Access. 2018;6:9303–9323. doi: 10.1109/ACCESS.2018.2793301. DOI
Liu Z., Choo K.-K.R., Grossschadl J. Securing Edge Devices in the Post-Quantum Internet of Things Using Lattice-Based Cryptography. IEEE Commun. Mag. 2018;56:158–162. doi: 10.1109/MCOM.2018.1700330. DOI
Wyner A.D. The Wire-tap Channel. Bell Syst. Tech. J. 1975;54:1355–1387. doi: 10.1002/j.1538-7305.1975.tb02040.x. DOI
Csiszar I., Korner J. Broadcast Channels With Confidential Messages. IEEE Trans. Inf. Theory. 1978;24:339–348. doi: 10.1109/TIT.1978.1055892. DOI
Gopala P.K., Lai L., Gamal H.E. On the secrecy capacity of fading channels. IEEE Trans. Inf. Theory. 2008;54:4687–4698. doi: 10.1109/TIT.2008.928990. DOI
Li Z., Jing T., Ma L., Huo Y., Qian J. Worst-Case Cooperative Jamming for Secure Communications in CIoT Networks. Sensors. 2016;16:339. doi: 10.3390/s16030339. PubMed DOI PMC
Tang X., Cai Y., Yang W., Yang W., Chen D., Hu J. Secure Transmission of Cooperative Zero-Forcing Jamming for Two-User SWIPT Sensor Networks. Sensors. 2018;18:331. doi: 10.3390/s18020331. PubMed DOI PMC
Yang M., Zhang B., Huang Y., Yang N., Guo D., Gao B. Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming. Sensors. 2016;16:1908. doi: 10.3390/s16111908. PubMed DOI PMC
Yang N., Yeoh P.L., Elkashlan M., Schober R., Collings I.B. Transmit Antenna Selection for Security Enhancement in MIMO Wiretap Channels. IEEE Trans. Commun. 2013;61:144–154. doi: 10.1109/TCOMM.2012.12.110670. DOI
Xiong J., Tang Y., Ma D., Xiao P., Wong K.-K. Secrecy Performance Analysis for TAS-MRC System with Imperfect Feedback. IEEE Trans. Inf. Forensics Secur. 2015;10:1617–1629. doi: 10.1109/TIFS.2015.2421358. DOI
Krikidis I. Opportunistic Relay Selection For Cooperative Networks with Secrecy Constraints. IET Commun. 2010;4:1787–1791. doi: 10.1049/iet-com.2009.0634. DOI
Liu Y., Wang L., Tran T.D., Elkashlan M., Duong T.Q. Relay Selection for Security Enhancement in Cognitive Relay Networks. IEEE Wirel. Commun. Lett. 2015;4:46–49. doi: 10.1109/LWC.2014.2365808. DOI
Duy T.T., Duong T.Q., Thanh T.L., Bao V.N.Q. Secrecy Performance Analysis with Relay Selection Methods under Impact of Co-channel Interference. IET Commun. 2015;9:1427–1435. doi: 10.1049/iet-com.2014.1128. DOI
Zhong B., Zhang Z. Secure Full-Duplex Two-Way Relaying Networks With Optimal Relay Selection. IEEE Commun. Lett. 2017;21:1123–1126. doi: 10.1109/LCOMM.2017.2655050. DOI
Kuhestani A., Mohammadi A., Mohammadi M. Joint Relay Selection and Power Allocation in Large-Scale MIMO Systems With Untrusted Relays and Passive Eavesdroppers. IEEE Trans. Inf. Forensics Secur. 2018;13:341–355. doi: 10.1109/TIFS.2017.2750102. DOI
Mo J., Tao M., Liu Y. Relay Placement for Physical Layer Security: A Secure Connection Perspective. IEEE Commun. Lett. 2012;16:878–881.
Hu L., Wen H., Wu B., Pan F., Liao R.-F., Song H., Tang J., Wang X. Cooperative Jamming for Physical Layer Security Enhancement in Internet of Things. IEEE Internet Things J. 2018;5:219–228. doi: 10.1109/JIOT.2017.2778185. DOI
Ma H., Cheng J., Wang X., Ma P. Robust MISO Beamforming with Cooperative Jamming for Secure Transmission From Perspectives of QoS and Secrecy Rate. IEEE Trans. Commun. 2018;66:767–780. doi: 10.1109/TCOMM.2017.2765637. DOI
Zhang G., Xu J., Wu Q., Cui M., Li X., Lin F. Wireless Powered Cooperative Jamming for Secure OFDM System. IEEE Trans. Veh. Technol. 2018;67:1331–1346. doi: 10.1109/TVT.2017.2756877. DOI
Zhou X., Zhang R., Ho C.-K. Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Trans. Commun. 2013;61:4754–4767. doi: 10.1109/TCOMM.2013.13.120855. DOI
Nasir A.A., Zhou X., Durrani S., Kennedy R.A. Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 2013;12:3622–3636. doi: 10.1109/TWC.2013.062413.122042. DOI
Atapattu S., Evans J. Optimal Energy Harvesting Protocols for Wireless Relay Networks. IEEE Trans. Wirel. Commun. 2016;15:5789–5803. doi: 10.1109/TWC.2016.2569097. DOI
Xu C., Zheng M., Liang W., Yu H., Liang Y.-C. Outage Performance of Underlay Multihop Cognitive Relay Networks with Energy Harvesting. IEEE Commun. Lett. 2016;20:1148–1151. doi: 10.1109/LCOMM.2016.2547985. DOI
Xu C., Zheng M., Liang W., Yu H., Liang Y.-C. End-to-end Throughput Maximization for Underlay Multi-hop Cognitive Radio Networks with RF Energy Harvesting. IEEE Trans. Wirel. Commun. 2017;16:3561–3572. doi: 10.1109/TWC.2017.2684125. DOI
Hieu T.D., Duy T.T., Dung L.T., Choi S.G. Performance Evaluation of Relay Selection Schemes in Beacon-Assisted Dual-hop Cognitive Radio Wireless Sensor Networks under Impact of Hardware Noises. Sensors. 2018;18:1843. doi: 10.3390/s18061843. PubMed DOI PMC
Sun A., Liang T., Li B. Secrecy Performance Analysis of Cognitive Sensor Radio Networks with an EH-Based Eavesdropper. Sensors. 2017;17:1026. doi: 10.3390/s17051026. PubMed DOI PMC
Hieu T.D., Duy T.T., Kim B.-S. Performance Enhancement for Multi-hop Harvest-to-Transmit WSNs with Path-Selection Methods in Presence of Eavesdroppers and Hardware Noises. IEEE Sens. J. 2018;18:5173–5186. doi: 10.1109/JSEN.2018.2829145. DOI
Mokhtar M., Gomaa A., Al-Dhahir N. OFDM AF relaying under I/Q imbalance: Performance analysis and baseband compensation. IEEE Trans. Commun. 2013;61:1304–1313. doi: 10.1109/TCOMM.2013.020813.120576. DOI
Björnson E., Matthaiou M., Debbah M. A new look at dual-hop relaying: Performance limits with hardware impairments. IEEE Trans. Commun. 2013;61:4512–4525. doi: 10.1109/TCOMM.2013.100913.130282. DOI
Solanki S., Upadhyay P.K., da Costa D.B., Bithas P.S., Kanatas A.G., Dias U.S. Joint Impact of RF Hardware Impairments and Channel Estimation Errors in Spectrum Sharing Multiple-Relay Networks. IEEE Trans. Commun. 2018;66:3809–3824. doi: 10.1109/TCOMM.2018.2832623. DOI
Boulogeorgos A.A., Karas D.S., Karagiannidis G.K. How much does I/Q Imbalance affect secrecy capacity? IEEE Commun. Lett. 2016;20:1305–1308. doi: 10.1109/LCOMM.2016.2558561. DOI
Zhu J., Ng D.W.K., Wang N., Schober R., Bhargava V.K. Analysis and Design of Secure Massive MIMO Systems in the Presence of Hardware Impairments. IEEE Trans. Wirel. Commun. 2017;16:2001–2016. doi: 10.1109/TWC.2017.2659724. DOI
Lee J.-H. Full-Duplex Relay for Enhancing Physical Layer Security in Multi-Hop Relaying Systems. IEEE Commun. Lett. 2015;19:525–528. doi: 10.1109/LCOMM.2015.2401551. DOI
Lee J.-H., Sohn I., Kim Y.-H. Transmit Power Allocation for Physical Layer Security in Cooperative Multi-Hop Full-Duplex Relay Networks. Sensors. 2016;16:1726. doi: 10.3390/s16101726. PubMed DOI PMC
Tian F., Chen X., Liu S., Yuan X., Li D., Zhang X., Yang Z. Secrecy Rate Optimization in Wireless Multi-Hop Full Duplex Networks. IEEE Access. 2018;6:5695–5704. doi: 10.1109/ACCESS.2018.2794739. DOI
Alotaibi E.R., Hamdi K.A. Secure Relaying in Multihop Communication Systems. IEEE Commun. Lett. 2016;20:1120–1123. doi: 10.1109/LCOMM.2016.2550025. DOI
Tin P.T., Hung D.T., Duy T.T., Voznak M. Analysis of Probability of Non-zero Secrecy Capacity for Multi-hop Networks in Presence of Hardware Impairments over Nakagami-m Fading Channels. Radio Eng. 2016;25:774–782.
Yao J., Liu Y. Secrecy Rate Maximization with Outage Constraint in Multihop Relaying Networks. IEEE Commun. Lett. 2018;22:304–307. doi: 10.1109/LCOMM.2017.2768513. DOI
Qi X., Huang K., Zhong Z., Kang X., Zhong Z. Physical layer security of multi-hop aided downlink MIMO heterogeneous cellular networks. Chin. Commun. 2016;13:120–130. doi: 10.1109/CC.2016.7833466. DOI
Lee J.-H. Confidential Multicasting Assisted by Multi-Hop Multi-Antenna DF Relays in the Presence of Multiple Eavesdroppers. IEEE Trans. Commun. 2016;64:4295–4304. doi: 10.1109/TCOMM.2016.2600676. DOI
Dong L., Han Z., Petropulu A.P., Poor H.V. Improving wireless physical layer security via cooperating relays. IEEE Trans. Signal Process. 2010;58:1875–1888. doi: 10.1109/TSP.2009.2038412. DOI
Bao V.N.Q., Trung N.L., Debbah M. Relay selection scheme for dual-hop networks under security constraints with multiple eavesdroppers. IEEE Trans. Wirel. Commun. 2013;12:6076–6085. doi: 10.1109/TWC.2013.110813.121671. DOI
Vo V.N., Tran D.-D., Chakchai S.-I., Tran H. Secrecy Performance Analysis for Fixed-Gain Energy Harvesting in an Internet of Things with Untrusted Relays. IEEE Access. 2018;6:48247–48258.
Huang Y., Zhang P., Wu Q., Wang J. Secrecy Performance of Wireless Powered Communication Networks with Multiple Eavesdroppers and Outdated CSI. IEEE Access. 2018;6:33774–33788. doi: 10.1109/ACCESS.2018.2835832. DOI
Lee K., Choi H.-H. Secure Analog Network Coding with Wireless Energy Harvesting under Multiple Eavesdroppers. IEEE Access. 2018;6:76289–76301. doi: 10.1109/ACCESS.2018.2884010. DOI
Laneman J.N., Tse D.N., Wornell G.W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory. 2004;50:3062–3080. doi: 10.1109/TIT.2004.838089. DOI
Matthaiou M., Papadogiannis A. Two-way relaying under the presence of relay transceiver hardware impairments. IEEE Commun. Lett. 2013;17:1136–1139. doi: 10.1109/LCOMM.2013.042313.130191. DOI
Duy T.T., Duong Q.T., da Costa D.B., Bao V.N.Q., Elkashlan M. Proactive Relay Selection with Joint Impact of Hardware Impairment and Co-channel Interference. IEEE Trans. Commun. 2015;63:1594–1606. doi: 10.1109/TCOMM.2015.2396517. DOI
Sharma P.K., Upadhyay P.K. Cognitive relaying with transceiver hardware impairments under interference constraints. IEEE Commun. Lett. 2016;20:820–823. doi: 10.1109/LCOMM.2016.2533500. DOI