Secrecy Performance of TAS/SC-Based Multi-Hop Harvest-to-Transmit Cognitive WSNs Under Joint Constraint of Interference and Hardware Imperfection

. 2019 Mar 07 ; 19 (5) : . [epub] 20190307

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30866513

Grantová podpora
SP2019/41and 102.04-2017.317, respectively. the grant SGS reg. No. SP2019/41 conducted at VSB Technical University of Ostrava, Czech Republic, and Vietnam National Foundation for Science and Technology Development (NAFOSTED)

In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.

Zobrazit více v PubMed

Ledwaba L.P.I., Hancke G.P., Venter H.S., Isaac S.J. Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices. IEEE Access. 2018;6:9303–9323. doi: 10.1109/ACCESS.2018.2793301. DOI

Liu Z., Choo K.-K.R., Grossschadl J. Securing Edge Devices in the Post-Quantum Internet of Things Using Lattice-Based Cryptography. IEEE Commun. Mag. 2018;56:158–162. doi: 10.1109/MCOM.2018.1700330. DOI

Wyner A.D. The Wire-tap Channel. Bell Syst. Tech. J. 1975;54:1355–1387. doi: 10.1002/j.1538-7305.1975.tb02040.x. DOI

Csiszar I., Korner J. Broadcast Channels With Confidential Messages. IEEE Trans. Inf. Theory. 1978;24:339–348. doi: 10.1109/TIT.1978.1055892. DOI

Gopala P.K., Lai L., Gamal H.E. On the secrecy capacity of fading channels. IEEE Trans. Inf. Theory. 2008;54:4687–4698. doi: 10.1109/TIT.2008.928990. DOI

Li Z., Jing T., Ma L., Huo Y., Qian J. Worst-Case Cooperative Jamming for Secure Communications in CIoT Networks. Sensors. 2016;16:339. doi: 10.3390/s16030339. PubMed DOI PMC

Tang X., Cai Y., Yang W., Yang W., Chen D., Hu J. Secure Transmission of Cooperative Zero-Forcing Jamming for Two-User SWIPT Sensor Networks. Sensors. 2018;18:331. doi: 10.3390/s18020331. PubMed DOI PMC

Yang M., Zhang B., Huang Y., Yang N., Guo D., Gao B. Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming. Sensors. 2016;16:1908. doi: 10.3390/s16111908. PubMed DOI PMC

Yang N., Yeoh P.L., Elkashlan M., Schober R., Collings I.B. Transmit Antenna Selection for Security Enhancement in MIMO Wiretap Channels. IEEE Trans. Commun. 2013;61:144–154. doi: 10.1109/TCOMM.2012.12.110670. DOI

Xiong J., Tang Y., Ma D., Xiao P., Wong K.-K. Secrecy Performance Analysis for TAS-MRC System with Imperfect Feedback. IEEE Trans. Inf. Forensics Secur. 2015;10:1617–1629. doi: 10.1109/TIFS.2015.2421358. DOI

Krikidis I. Opportunistic Relay Selection For Cooperative Networks with Secrecy Constraints. IET Commun. 2010;4:1787–1791. doi: 10.1049/iet-com.2009.0634. DOI

Liu Y., Wang L., Tran T.D., Elkashlan M., Duong T.Q. Relay Selection for Security Enhancement in Cognitive Relay Networks. IEEE Wirel. Commun. Lett. 2015;4:46–49. doi: 10.1109/LWC.2014.2365808. DOI

Duy T.T., Duong T.Q., Thanh T.L., Bao V.N.Q. Secrecy Performance Analysis with Relay Selection Methods under Impact of Co-channel Interference. IET Commun. 2015;9:1427–1435. doi: 10.1049/iet-com.2014.1128. DOI

Zhong B., Zhang Z. Secure Full-Duplex Two-Way Relaying Networks With Optimal Relay Selection. IEEE Commun. Lett. 2017;21:1123–1126. doi: 10.1109/LCOMM.2017.2655050. DOI

Kuhestani A., Mohammadi A., Mohammadi M. Joint Relay Selection and Power Allocation in Large-Scale MIMO Systems With Untrusted Relays and Passive Eavesdroppers. IEEE Trans. Inf. Forensics Secur. 2018;13:341–355. doi: 10.1109/TIFS.2017.2750102. DOI

Mo J., Tao M., Liu Y. Relay Placement for Physical Layer Security: A Secure Connection Perspective. IEEE Commun. Lett. 2012;16:878–881.

Hu L., Wen H., Wu B., Pan F., Liao R.-F., Song H., Tang J., Wang X. Cooperative Jamming for Physical Layer Security Enhancement in Internet of Things. IEEE Internet Things J. 2018;5:219–228. doi: 10.1109/JIOT.2017.2778185. DOI

Ma H., Cheng J., Wang X., Ma P. Robust MISO Beamforming with Cooperative Jamming for Secure Transmission From Perspectives of QoS and Secrecy Rate. IEEE Trans. Commun. 2018;66:767–780. doi: 10.1109/TCOMM.2017.2765637. DOI

Zhang G., Xu J., Wu Q., Cui M., Li X., Lin F. Wireless Powered Cooperative Jamming for Secure OFDM System. IEEE Trans. Veh. Technol. 2018;67:1331–1346. doi: 10.1109/TVT.2017.2756877. DOI

Zhou X., Zhang R., Ho C.-K. Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Trans. Commun. 2013;61:4754–4767. doi: 10.1109/TCOMM.2013.13.120855. DOI

Nasir A.A., Zhou X., Durrani S., Kennedy R.A. Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 2013;12:3622–3636. doi: 10.1109/TWC.2013.062413.122042. DOI

Atapattu S., Evans J. Optimal Energy Harvesting Protocols for Wireless Relay Networks. IEEE Trans. Wirel. Commun. 2016;15:5789–5803. doi: 10.1109/TWC.2016.2569097. DOI

Xu C., Zheng M., Liang W., Yu H., Liang Y.-C. Outage Performance of Underlay Multihop Cognitive Relay Networks with Energy Harvesting. IEEE Commun. Lett. 2016;20:1148–1151. doi: 10.1109/LCOMM.2016.2547985. DOI

Xu C., Zheng M., Liang W., Yu H., Liang Y.-C. End-to-end Throughput Maximization for Underlay Multi-hop Cognitive Radio Networks with RF Energy Harvesting. IEEE Trans. Wirel. Commun. 2017;16:3561–3572. doi: 10.1109/TWC.2017.2684125. DOI

Hieu T.D., Duy T.T., Dung L.T., Choi S.G. Performance Evaluation of Relay Selection Schemes in Beacon-Assisted Dual-hop Cognitive Radio Wireless Sensor Networks under Impact of Hardware Noises. Sensors. 2018;18:1843. doi: 10.3390/s18061843. PubMed DOI PMC

Sun A., Liang T., Li B. Secrecy Performance Analysis of Cognitive Sensor Radio Networks with an EH-Based Eavesdropper. Sensors. 2017;17:1026. doi: 10.3390/s17051026. PubMed DOI PMC

Hieu T.D., Duy T.T., Kim B.-S. Performance Enhancement for Multi-hop Harvest-to-Transmit WSNs with Path-Selection Methods in Presence of Eavesdroppers and Hardware Noises. IEEE Sens. J. 2018;18:5173–5186. doi: 10.1109/JSEN.2018.2829145. DOI

Mokhtar M., Gomaa A., Al-Dhahir N. OFDM AF relaying under I/Q imbalance: Performance analysis and baseband compensation. IEEE Trans. Commun. 2013;61:1304–1313. doi: 10.1109/TCOMM.2013.020813.120576. DOI

Björnson E., Matthaiou M., Debbah M. A new look at dual-hop relaying: Performance limits with hardware impairments. IEEE Trans. Commun. 2013;61:4512–4525. doi: 10.1109/TCOMM.2013.100913.130282. DOI

Solanki S., Upadhyay P.K., da Costa D.B., Bithas P.S., Kanatas A.G., Dias U.S. Joint Impact of RF Hardware Impairments and Channel Estimation Errors in Spectrum Sharing Multiple-Relay Networks. IEEE Trans. Commun. 2018;66:3809–3824. doi: 10.1109/TCOMM.2018.2832623. DOI

Boulogeorgos A.A., Karas D.S., Karagiannidis G.K. How much does I/Q Imbalance affect secrecy capacity? IEEE Commun. Lett. 2016;20:1305–1308. doi: 10.1109/LCOMM.2016.2558561. DOI

Zhu J., Ng D.W.K., Wang N., Schober R., Bhargava V.K. Analysis and Design of Secure Massive MIMO Systems in the Presence of Hardware Impairments. IEEE Trans. Wirel. Commun. 2017;16:2001–2016. doi: 10.1109/TWC.2017.2659724. DOI

Lee J.-H. Full-Duplex Relay for Enhancing Physical Layer Security in Multi-Hop Relaying Systems. IEEE Commun. Lett. 2015;19:525–528. doi: 10.1109/LCOMM.2015.2401551. DOI

Lee J.-H., Sohn I., Kim Y.-H. Transmit Power Allocation for Physical Layer Security in Cooperative Multi-Hop Full-Duplex Relay Networks. Sensors. 2016;16:1726. doi: 10.3390/s16101726. PubMed DOI PMC

Tian F., Chen X., Liu S., Yuan X., Li D., Zhang X., Yang Z. Secrecy Rate Optimization in Wireless Multi-Hop Full Duplex Networks. IEEE Access. 2018;6:5695–5704. doi: 10.1109/ACCESS.2018.2794739. DOI

Alotaibi E.R., Hamdi K.A. Secure Relaying in Multihop Communication Systems. IEEE Commun. Lett. 2016;20:1120–1123. doi: 10.1109/LCOMM.2016.2550025. DOI

Tin P.T., Hung D.T., Duy T.T., Voznak M. Analysis of Probability of Non-zero Secrecy Capacity for Multi-hop Networks in Presence of Hardware Impairments over Nakagami-m Fading Channels. Radio Eng. 2016;25:774–782.

Yao J., Liu Y. Secrecy Rate Maximization with Outage Constraint in Multihop Relaying Networks. IEEE Commun. Lett. 2018;22:304–307. doi: 10.1109/LCOMM.2017.2768513. DOI

Qi X., Huang K., Zhong Z., Kang X., Zhong Z. Physical layer security of multi-hop aided downlink MIMO heterogeneous cellular networks. Chin. Commun. 2016;13:120–130. doi: 10.1109/CC.2016.7833466. DOI

Lee J.-H. Confidential Multicasting Assisted by Multi-Hop Multi-Antenna DF Relays in the Presence of Multiple Eavesdroppers. IEEE Trans. Commun. 2016;64:4295–4304. doi: 10.1109/TCOMM.2016.2600676. DOI

Dong L., Han Z., Petropulu A.P., Poor H.V. Improving wireless physical layer security via cooperating relays. IEEE Trans. Signal Process. 2010;58:1875–1888. doi: 10.1109/TSP.2009.2038412. DOI

Bao V.N.Q., Trung N.L., Debbah M. Relay selection scheme for dual-hop networks under security constraints with multiple eavesdroppers. IEEE Trans. Wirel. Commun. 2013;12:6076–6085. doi: 10.1109/TWC.2013.110813.121671. DOI

Vo V.N., Tran D.-D., Chakchai S.-I., Tran H. Secrecy Performance Analysis for Fixed-Gain Energy Harvesting in an Internet of Things with Untrusted Relays. IEEE Access. 2018;6:48247–48258.

Huang Y., Zhang P., Wu Q., Wang J. Secrecy Performance of Wireless Powered Communication Networks with Multiple Eavesdroppers and Outdated CSI. IEEE Access. 2018;6:33774–33788. doi: 10.1109/ACCESS.2018.2835832. DOI

Lee K., Choi H.-H. Secure Analog Network Coding with Wireless Energy Harvesting under Multiple Eavesdroppers. IEEE Access. 2018;6:76289–76301. doi: 10.1109/ACCESS.2018.2884010. DOI

Laneman J.N., Tse D.N., Wornell G.W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory. 2004;50:3062–3080. doi: 10.1109/TIT.2004.838089. DOI

Matthaiou M., Papadogiannis A. Two-way relaying under the presence of relay transceiver hardware impairments. IEEE Commun. Lett. 2013;17:1136–1139. doi: 10.1109/LCOMM.2013.042313.130191. DOI

Duy T.T., Duong Q.T., da Costa D.B., Bao V.N.Q., Elkashlan M. Proactive Relay Selection with Joint Impact of Hardware Impairment and Co-channel Interference. IEEE Trans. Commun. 2015;63:1594–1606. doi: 10.1109/TCOMM.2015.2396517. DOI

Sharma P.K., Upadhyay P.K. Cognitive relaying with transceiver hardware impairments under interference constraints. IEEE Commun. Lett. 2016;20:820–823. doi: 10.1109/LCOMM.2016.2533500. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...