Rateless Codes-Based Secure Communication Employing Transmit Antenna Selection and Harvest-To-Jam under Joint Effect of Interference and Hardware Impairments
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. SP2019/41 and 102.04-2017.317, respectively
This research received support from the grant SGS reg. No. SP2019/41 conducted at VSB Technical University of Ostrava, Czech Republic, and is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.04
PubMed
33267414
PubMed Central
PMC7515214
DOI
10.3390/e21070700
PII: e21070700
Knihovny.cz E-zdroje
- Klíčová slova
- co-channel interference, energy harvesting, hardware impairments, rateless codes, transmit antenna selection,
- Publikační typ
- časopisecké články MeSH
In this paper, we propose a rateless codes-based communication protocol to provide security for wireless systems. In the proposed protocol, a source uses the transmit antenna selection (TAS) technique to transmit Fountain-encoded packets to a destination in presence of an eavesdropper. Moreover, a cooperative jammer node harvests energy from radio frequency (RF) signals of the source and the interference sources to generate jamming noises on the eavesdropper. The data transmission terminates as soon as the destination can receive a sufficient number of the encoded packets for decoding the original data of the source. To obtain secure communication, the destination must receive sufficient encoded packets before the eavesdropper. The combination of the TAS and harvest-to-jam techniques obtains the security and efficient energy via reducing the number of the data transmission, increasing the quality of the data channel, decreasing the quality of the eavesdropping channel, and supporting the energy for the jammer. The main contribution of this paper is to derive exact closed-form expressions of outage probability (OP), probability of successful and secure communication (SS), intercept probability (IP) and average number of time slots used by the source over Rayleigh fading channel under the joint impact of co-channel interference and hardware impairments. Then, Monte Carlo simulations are presented to verify the theoretical results.
Department of Electrical and Electronic Engineering Duy Tan University DaNang City 550000 Vietnam
VSB Technical University of Ostrava 17 listopadu 15 2172 708 33 Ostrava Czech Republic
Zobrazit více v PubMed
Wyner A.D. The Wire-tap Channel. Bell Syst. Tech. J. 1975;54:1355–1387. doi: 10.1002/j.1538-7305.1975.tb02040.x. DOI
Csiszar I., Korner J. Broadcast Channels with Confidential Messages. IEEE Trans. Inf. Theory. 1978;2:339–348. doi: 10.1109/TIT.1978.1055892. DOI
Liu R., Maric I., Spasojevic P., Yates R.D. Discrete Memoryless Interference and Broadcast Channels with Conffdential Messages: Secrecy Rate Regions. IEEE Trans. Inf. Theory. 2008;2:2493–2507. doi: 10.1109/TIT.2008.921879. DOI
Gopala P.K., Lai L., Gamal H.E. On the Secrecy Capacity of Fading Channels. IEEE Trans. Inf. Theory. 2008;2:4687–4698. doi: 10.1109/TIT.2008.928990. DOI
Zhang J., Duong T.Q., Woods R., Marshall A. Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview. Entropy. 2017;19:420. doi: 10.3390/e19080420. DOI
Sun L., Du Q. A Review of Physical Layer Security Techniques for Internet of Things: Challenges and Solutions. Entropy. 2018;2:730. doi: 10.3390/e20100730. PubMed DOI PMC
Tin P.T., Hung D.T., Tan N.N., Duy T.T., Voznak M. Secrecy Performance Enhancement for Underlay Cognitive Radio Networks Employing Cooperative Multi-hop Transmission With and Without Presence of Hardware Impairments. Entropy. 2019;21:217. doi: 10.3390/e21020217. PubMed DOI PMC
Tin P.T., Nam P.M., Duy T.T., Phuong T.T., Voznak M. Secrecy Performance of TAS/SC-based Multi-hop Harvest-to-Transmit Cognitive WSNs under Joint Constraint of Interference and Hardware Imperfection. Sensors. 2019;19:1160. doi: 10.3390/s19051160. PubMed DOI PMC
Zhang T., Cai Y., Huang Y., Duong T.Q., Yang W. Secure Transmission in Cognitive MIMO Relaying Networks With Outdated Channel State Information. IEEE Access. 2016;4:8212–8224. doi: 10.1109/ACCESS.2016.2608966. DOI
Huang Y., Wang J., Zhong C., Duong T.Q., Karagiannidis G.K. Secure Transmission in Cooperative Relaying Networks with Multiple Antennas. IEEE Trans. Wirel. Commun. 2016;2:6843–6856. doi: 10.1109/TWC.2016.2591940. DOI
Yang M., Guo D., Huang Y., Duong T.Q., Zhang B. Secure Multiuser Scheduling in Downlink Dual-hop Regenerative Relay Networks over Nakagami-m Fading Channels. IEEE Trans. Wirel. Commun. 2016;2:8009–8024. doi: 10.1109/TWC.2016.2610965. DOI
Zhao R., Lin H., He Y.-C., Chen D.-H., Huang Y., Yang L. Secrecy Performance of Transmit Antenna Selection for MIMO Relay Systems with Outdated CSI. IEEE Trans. Commun. 2018;2:546–559. doi: 10.1109/TCOMM.2017.2747554. DOI
Mo J., Tao M., Liu L. Relay Placement for Physical Layer Security: A Secure Connection Perspective. IEEE Commun. Lett. 2012;2:878–881.
Lee J.-H., Sohn I., Kim Y.-H. Transmit Power Allocation for Physical Layer Security in Cooperative Multi-Hop Full-Duplex Relay Networks. Sensors. 2016;2:1726. doi: 10.3390/s16101726. PubMed DOI PMC
Keshav S., Ku M.-L., Biswas S., Ratnarajah T. Energy-Efficient Subcarrier Pairing and Power Allocation for DF Relay Networks with an Eavesdropper. Energies. 2017;2:1953.
Hieu T.D., Duy T.T., Kim B.-S. Performance Enhancement for Multi-hop Harvest-to-Transmit WSNs with Path-Selection Methods in Presence of Eavesdroppers and Hardware Noises. IEEE Sens. J. 2018;2:5173–5186. doi: 10.1109/JSEN.2018.2829145. DOI
Cao K., Cai K., Wu Y., Yang W. Cooperative Jamming for Secure Communication with Finite Alphabet Inputs. IEEE Commun. Lett. 2017;2:2025–2028. doi: 10.1109/LCOMM.2017.2716974. DOI
Kang J.M., Yang J., Ha J., Kim I.M. Joint Design of Optimal Precoding and Cooperative Jamming for Multiuser Secure Broadcast Systems. IEEE Trans. Veh. Technol. 2017;2:10551–10556. doi: 10.1109/TVT.2017.2735414. DOI
Ma H., Cheng J., Wang X., Ma P. Robust MISO Beamforming with Cooperative Jamming for Secure Transmission From Perspectives of QoS and Secrecy Rate. IEEE Trans. Commun. 2018;2:767–780. doi: 10.1109/TCOMM.2017.2765637. DOI
Zhang G., Xu J., Wu Q., Cui M., Li X., Lin F. Wireless Powered Cooperative Jamming for Secure OFDM System. IEEE Trans. Veh. Technol. 2018;2:1331–1346. doi: 10.1109/TVT.2017.2756877. DOI
Nasir A.A., Zhou X., Durrani S., Kennedy R.A. Relaying Protocols for Wireless Energy Harvesting and Information Processing. IEEE Trans. Wirel. Commun. 2013;2:3622–3636. doi: 10.1109/TWC.2013.062413.122042. DOI
Atapattu S., Evans J. Optimal Energy Harvesting Protocols for Wireless Relay Networks. IEEE Trans. Wirel. Commun. 2016;2:5789–5803. doi: 10.1109/TWC.2016.2569097. DOI
Wang L., Wong K.K., Jin S., Zheng G., Heath R.W. A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-Dense Networks. IEEE Commun. Mag. 2018;2:49–55. doi: 10.1109/MCOM.2018.1700439. DOI
Chang S., Li J., Fu X., Zhang L. Energy Harvesting for Physical Layer Security in Cooperative Networks Based on Compressed Sensing. Entropy. 2017;19:462. doi: 10.3390/e19090462. DOI
Xu C., Zheng M., Liang W., Yu H., Liang Y.C. Outage Performance of Underlay Multihop Cognitive Relay Networks with Energy Harvesting. IEEE Commun. Lett. 2016;2:1148–1151. doi: 10.1109/LCOMM.2016.2547985. DOI
Xu C., Zheng M., Liang W., Yu H., Liang Y.C. End-to-end Throughput Maximization for Underlay Multi-hop Cognitive Radio Networks with RF Energy Harvesting. IEEE Trans. Wirel. Commun. 2017;2:3561–3572. doi: 10.1109/TWC.2017.2684125. DOI
Zhu G., Zhong C., Suraweera H.A., Karagiannidis G.K., Zhang Z., Tsiftsis T.A. Wireless Information and Power Transfer in Relay Systems with Multiple Antennas and Interference. IEEE Trans. Commun. 2015;2:1400–1418. doi: 10.1109/TCOMM.2015.2398862. DOI
Chen E., Xia M., Da Costa D., Aissa S. Multi-hop Cooperative Relaying with Energy Harvesting from Co-Channel Interferences. IEEE Commun. Lett. 2017;2:1199–1202. doi: 10.1109/LCOMM.2017.2655039. DOI
Liu M., Liu Y. Power Allocation for Secure SWIPT Systems with Wireless-Powered Cooperative Jamming. IEEE Commun. Lett. 2017;2:1353–1356. doi: 10.1109/LCOMM.2017.2672660. DOI
MacKay D. Fountain Codes. IEE Proc. Commun. 2005;2:1331–1346. doi: 10.1049/ip-com:20050237. DOI
Castura J., Mao Y. Rateless Coding over Fading Channels. IEEE Commun. Lett. 2006;2:46–48. doi: 10.1109/LCOMM.2006.1576565. DOI
Nguyen H.D.T., Tran L.N., Hong E.K. On Transmission Efficiency for Wireless Broadcast Using Network Coding and Fountain Codes. IEEE Commun. Lett. 2011;2:569–571. doi: 10.1109/LCOMM.2011.031611.101189. DOI
Yue J., Lin Z., Vucetic B. Distributed Fountain Codes With Adaptive Unequal Error Protection in Wireless Relay Networks. IEEE Trans. Wirel. Commun. 2014;2:4220–4231. doi: 10.1109/TWC.2014.2314632. DOI
Niu H., Iwai M., Sezaki K., Sun L., Du Q. Exploiting Fountain Codes for Secure Wireless Delivery. IEEE Commun. Lett. 2014;2:777–780. doi: 10.1109/LCOMM.2014.030914.140030. DOI
Li W., Du Q., Sun L., Ren P., Wang Y. Security Enhanced via Dynamic Fountain Code Design for Wireless Delivery; Proceedings of the IEEE 2016 IEEE Wireless Communications and Networking Conference; Doha, Qatar. 3–6 April 2016; pp. 1–6.
Sun L., Ren P., Du Q., Wang Y. Fountain-coding Aided Strategy for Secure Cooperative Transmission in Industrial Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2016;2:291–300. doi: 10.1109/TII.2015.2509442. DOI
Du Q., Xu Y., Li W., Song H. Security Enhancement for Multicast over Internet of Things by Dynamically Constructed Fountain Codes. Wirel. Commun. Mob. Comput. 2018;2018:8404219. doi: 10.1155/2018/8404219. DOI
Hung D.T., Duy T.T., Trinh D.Q., Bao V.N.Q. Secrecy Performance Evaluation of TAS Protocol Exploiting Fountain Codes and Cooperative Jamming under Impact of Hardware Impairments; Proceedings of the 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom); Ho Chi Minh City, Vietnam. 29–31 January 2018; pp. 164–169.
Hung D.T., Duy T.T., Trinh D.Q., Bao V.N.Q., Hanh T. Security-Reliability Analysis of Power Beacon-Assisted Multi-hop Relaying Networks Exploiting Fountain Codes with Hardware Imperfection; Proceedings of the International Conference on Advanced Technologies for Communications (ATC); Ho Chi Minh City, Vietnam. 18–20 October 2018; pp. 354–359.
Mokhtar M., Gomaa A., Al-Dhahir N. OFDM AF Relaying under I/Q Imbalance: Performance Analysis and Baseband Compensation. IEEE Trans. Commun. 2013;2:1304–1313. doi: 10.1109/TCOMM.2013.020813.120576. DOI
Björnson E., Matthaiou M., Debbah M. A New Look at Dual-Hop Relaying: Performance Limits with Hardware Impairments. IEEE Trans. Commun. 2013;2:4512–4525. doi: 10.1109/TCOMM.2013.100913.130282. DOI
Son P.N., Kong H.Y. Energy-Harvesting Decode-and-Forward Relaying under Hardware Impairments. Wirel. Pers. Commun. 2017;2:6381–6395. doi: 10.1007/s11277-017-4483-x. DOI
Solanki S., Upadhyay P.K., da Costa D.B., Bithas P.S., Kanatas A.G., Dias U.S. Joint Impact of RF Hardware Impairments and Channel Estimation Errors in Spectrum Sharing Multiple-Relay Networks. IEEE Trans. Commun. 2018;2:3809–3824. doi: 10.1109/TCOMM.2018.2832623. DOI
Zarei S., Gerstacker W.H., Aulin J., Schober R. Multi-Cell Massive MIMO Systems with Hardware Impairments: Uplink-Downlink Duality and Downlink Precoding. IEEE Trans. Wirel. Commun. 2017;2:5115–5130. doi: 10.1109/TWC.2017.2705709. DOI
Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products. 7th ed. Elsevier Inc.; San Diego, CA, USA: 2007.
Duy T.T., Alexandropoulos G.C., Vu T.T., Vo N.-S., Duong T.Q. Outage Performance of Cognitive Cooperative Networks with Relay Selection over Double-Rayleigh Fading Channels. IET Commun. 2016;2:57–64. doi: 10.1049/iet-com.2015.0236. DOI