Rateless Codes-Based Secure Communication Employing Transmit Antenna Selection and Harvest-To-Jam under Joint Effect of Interference and Hardware Impairments

. 2019 Jul 16 ; 21 (7) : . [epub] 20190716

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33267414

Grantová podpora
No. SP2019/41 and 102.04-2017.317, respectively This research received support from the grant SGS reg. No. SP2019/41 conducted at VSB Technical University of Ostrava, Czech Republic, and is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.04

In this paper, we propose a rateless codes-based communication protocol to provide security for wireless systems. In the proposed protocol, a source uses the transmit antenna selection (TAS) technique to transmit Fountain-encoded packets to a destination in presence of an eavesdropper. Moreover, a cooperative jammer node harvests energy from radio frequency (RF) signals of the source and the interference sources to generate jamming noises on the eavesdropper. The data transmission terminates as soon as the destination can receive a sufficient number of the encoded packets for decoding the original data of the source. To obtain secure communication, the destination must receive sufficient encoded packets before the eavesdropper. The combination of the TAS and harvest-to-jam techniques obtains the security and efficient energy via reducing the number of the data transmission, increasing the quality of the data channel, decreasing the quality of the eavesdropping channel, and supporting the energy for the jammer. The main contribution of this paper is to derive exact closed-form expressions of outage probability (OP), probability of successful and secure communication (SS), intercept probability (IP) and average number of time slots used by the source over Rayleigh fading channel under the joint impact of co-channel interference and hardware impairments. Then, Monte Carlo simulations are presented to verify the theoretical results.

Zobrazit více v PubMed

Wyner A.D. The Wire-tap Channel. Bell Syst. Tech. J. 1975;54:1355–1387. doi: 10.1002/j.1538-7305.1975.tb02040.x. DOI

Csiszar I., Korner J. Broadcast Channels with Confidential Messages. IEEE Trans. Inf. Theory. 1978;2:339–348. doi: 10.1109/TIT.1978.1055892. DOI

Liu R., Maric I., Spasojevic P., Yates R.D. Discrete Memoryless Interference and Broadcast Channels with Conffdential Messages: Secrecy Rate Regions. IEEE Trans. Inf. Theory. 2008;2:2493–2507. doi: 10.1109/TIT.2008.921879. DOI

Gopala P.K., Lai L., Gamal H.E. On the Secrecy Capacity of Fading Channels. IEEE Trans. Inf. Theory. 2008;2:4687–4698. doi: 10.1109/TIT.2008.928990. DOI

Zhang J., Duong T.Q., Woods R., Marshall A. Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview. Entropy. 2017;19:420. doi: 10.3390/e19080420. DOI

Sun L., Du Q. A Review of Physical Layer Security Techniques for Internet of Things: Challenges and Solutions. Entropy. 2018;2:730. doi: 10.3390/e20100730. PubMed DOI PMC

Tin P.T., Hung D.T., Tan N.N., Duy T.T., Voznak M. Secrecy Performance Enhancement for Underlay Cognitive Radio Networks Employing Cooperative Multi-hop Transmission With and Without Presence of Hardware Impairments. Entropy. 2019;21:217. doi: 10.3390/e21020217. PubMed DOI PMC

Tin P.T., Nam P.M., Duy T.T., Phuong T.T., Voznak M. Secrecy Performance of TAS/SC-based Multi-hop Harvest-to-Transmit Cognitive WSNs under Joint Constraint of Interference and Hardware Imperfection. Sensors. 2019;19:1160. doi: 10.3390/s19051160. PubMed DOI PMC

Zhang T., Cai Y., Huang Y., Duong T.Q., Yang W. Secure Transmission in Cognitive MIMO Relaying Networks With Outdated Channel State Information. IEEE Access. 2016;4:8212–8224. doi: 10.1109/ACCESS.2016.2608966. DOI

Huang Y., Wang J., Zhong C., Duong T.Q., Karagiannidis G.K. Secure Transmission in Cooperative Relaying Networks with Multiple Antennas. IEEE Trans. Wirel. Commun. 2016;2:6843–6856. doi: 10.1109/TWC.2016.2591940. DOI

Yang M., Guo D., Huang Y., Duong T.Q., Zhang B. Secure Multiuser Scheduling in Downlink Dual-hop Regenerative Relay Networks over Nakagami-m Fading Channels. IEEE Trans. Wirel. Commun. 2016;2:8009–8024. doi: 10.1109/TWC.2016.2610965. DOI

Zhao R., Lin H., He Y.-C., Chen D.-H., Huang Y., Yang L. Secrecy Performance of Transmit Antenna Selection for MIMO Relay Systems with Outdated CSI. IEEE Trans. Commun. 2018;2:546–559. doi: 10.1109/TCOMM.2017.2747554. DOI

Mo J., Tao M., Liu L. Relay Placement for Physical Layer Security: A Secure Connection Perspective. IEEE Commun. Lett. 2012;2:878–881.

Lee J.-H., Sohn I., Kim Y.-H. Transmit Power Allocation for Physical Layer Security in Cooperative Multi-Hop Full-Duplex Relay Networks. Sensors. 2016;2:1726. doi: 10.3390/s16101726. PubMed DOI PMC

Keshav S., Ku M.-L., Biswas S., Ratnarajah T. Energy-Efficient Subcarrier Pairing and Power Allocation for DF Relay Networks with an Eavesdropper. Energies. 2017;2:1953.

Hieu T.D., Duy T.T., Kim B.-S. Performance Enhancement for Multi-hop Harvest-to-Transmit WSNs with Path-Selection Methods in Presence of Eavesdroppers and Hardware Noises. IEEE Sens. J. 2018;2:5173–5186. doi: 10.1109/JSEN.2018.2829145. DOI

Cao K., Cai K., Wu Y., Yang W. Cooperative Jamming for Secure Communication with Finite Alphabet Inputs. IEEE Commun. Lett. 2017;2:2025–2028. doi: 10.1109/LCOMM.2017.2716974. DOI

Kang J.M., Yang J., Ha J., Kim I.M. Joint Design of Optimal Precoding and Cooperative Jamming for Multiuser Secure Broadcast Systems. IEEE Trans. Veh. Technol. 2017;2:10551–10556. doi: 10.1109/TVT.2017.2735414. DOI

Ma H., Cheng J., Wang X., Ma P. Robust MISO Beamforming with Cooperative Jamming for Secure Transmission From Perspectives of QoS and Secrecy Rate. IEEE Trans. Commun. 2018;2:767–780. doi: 10.1109/TCOMM.2017.2765637. DOI

Zhang G., Xu J., Wu Q., Cui M., Li X., Lin F. Wireless Powered Cooperative Jamming for Secure OFDM System. IEEE Trans. Veh. Technol. 2018;2:1331–1346. doi: 10.1109/TVT.2017.2756877. DOI

Nasir A.A., Zhou X., Durrani S., Kennedy R.A. Relaying Protocols for Wireless Energy Harvesting and Information Processing. IEEE Trans. Wirel. Commun. 2013;2:3622–3636. doi: 10.1109/TWC.2013.062413.122042. DOI

Atapattu S., Evans J. Optimal Energy Harvesting Protocols for Wireless Relay Networks. IEEE Trans. Wirel. Commun. 2016;2:5789–5803. doi: 10.1109/TWC.2016.2569097. DOI

Wang L., Wong K.K., Jin S., Zheng G., Heath R.W. A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-Dense Networks. IEEE Commun. Mag. 2018;2:49–55. doi: 10.1109/MCOM.2018.1700439. DOI

Chang S., Li J., Fu X., Zhang L. Energy Harvesting for Physical Layer Security in Cooperative Networks Based on Compressed Sensing. Entropy. 2017;19:462. doi: 10.3390/e19090462. DOI

Xu C., Zheng M., Liang W., Yu H., Liang Y.C. Outage Performance of Underlay Multihop Cognitive Relay Networks with Energy Harvesting. IEEE Commun. Lett. 2016;2:1148–1151. doi: 10.1109/LCOMM.2016.2547985. DOI

Xu C., Zheng M., Liang W., Yu H., Liang Y.C. End-to-end Throughput Maximization for Underlay Multi-hop Cognitive Radio Networks with RF Energy Harvesting. IEEE Trans. Wirel. Commun. 2017;2:3561–3572. doi: 10.1109/TWC.2017.2684125. DOI

Zhu G., Zhong C., Suraweera H.A., Karagiannidis G.K., Zhang Z., Tsiftsis T.A. Wireless Information and Power Transfer in Relay Systems with Multiple Antennas and Interference. IEEE Trans. Commun. 2015;2:1400–1418. doi: 10.1109/TCOMM.2015.2398862. DOI

Chen E., Xia M., Da Costa D., Aissa S. Multi-hop Cooperative Relaying with Energy Harvesting from Co-Channel Interferences. IEEE Commun. Lett. 2017;2:1199–1202. doi: 10.1109/LCOMM.2017.2655039. DOI

Liu M., Liu Y. Power Allocation for Secure SWIPT Systems with Wireless-Powered Cooperative Jamming. IEEE Commun. Lett. 2017;2:1353–1356. doi: 10.1109/LCOMM.2017.2672660. DOI

MacKay D. Fountain Codes. IEE Proc. Commun. 2005;2:1331–1346. doi: 10.1049/ip-com:20050237. DOI

Castura J., Mao Y. Rateless Coding over Fading Channels. IEEE Commun. Lett. 2006;2:46–48. doi: 10.1109/LCOMM.2006.1576565. DOI

Nguyen H.D.T., Tran L.N., Hong E.K. On Transmission Efficiency for Wireless Broadcast Using Network Coding and Fountain Codes. IEEE Commun. Lett. 2011;2:569–571. doi: 10.1109/LCOMM.2011.031611.101189. DOI

Yue J., Lin Z., Vucetic B. Distributed Fountain Codes With Adaptive Unequal Error Protection in Wireless Relay Networks. IEEE Trans. Wirel. Commun. 2014;2:4220–4231. doi: 10.1109/TWC.2014.2314632. DOI

Niu H., Iwai M., Sezaki K., Sun L., Du Q. Exploiting Fountain Codes for Secure Wireless Delivery. IEEE Commun. Lett. 2014;2:777–780. doi: 10.1109/LCOMM.2014.030914.140030. DOI

Li W., Du Q., Sun L., Ren P., Wang Y. Security Enhanced via Dynamic Fountain Code Design for Wireless Delivery; Proceedings of the IEEE 2016 IEEE Wireless Communications and Networking Conference; Doha, Qatar. 3–6 April 2016; pp. 1–6.

Sun L., Ren P., Du Q., Wang Y. Fountain-coding Aided Strategy for Secure Cooperative Transmission in Industrial Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2016;2:291–300. doi: 10.1109/TII.2015.2509442. DOI

Du Q., Xu Y., Li W., Song H. Security Enhancement for Multicast over Internet of Things by Dynamically Constructed Fountain Codes. Wirel. Commun. Mob. Comput. 2018;2018:8404219. doi: 10.1155/2018/8404219. DOI

Hung D.T., Duy T.T., Trinh D.Q., Bao V.N.Q. Secrecy Performance Evaluation of TAS Protocol Exploiting Fountain Codes and Cooperative Jamming under Impact of Hardware Impairments; Proceedings of the 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom); Ho Chi Minh City, Vietnam. 29–31 January 2018; pp. 164–169.

Hung D.T., Duy T.T., Trinh D.Q., Bao V.N.Q., Hanh T. Security-Reliability Analysis of Power Beacon-Assisted Multi-hop Relaying Networks Exploiting Fountain Codes with Hardware Imperfection; Proceedings of the International Conference on Advanced Technologies for Communications (ATC); Ho Chi Minh City, Vietnam. 18–20 October 2018; pp. 354–359.

Mokhtar M., Gomaa A., Al-Dhahir N. OFDM AF Relaying under I/Q Imbalance: Performance Analysis and Baseband Compensation. IEEE Trans. Commun. 2013;2:1304–1313. doi: 10.1109/TCOMM.2013.020813.120576. DOI

Björnson E., Matthaiou M., Debbah M. A New Look at Dual-Hop Relaying: Performance Limits with Hardware Impairments. IEEE Trans. Commun. 2013;2:4512–4525. doi: 10.1109/TCOMM.2013.100913.130282. DOI

Son P.N., Kong H.Y. Energy-Harvesting Decode-and-Forward Relaying under Hardware Impairments. Wirel. Pers. Commun. 2017;2:6381–6395. doi: 10.1007/s11277-017-4483-x. DOI

Solanki S., Upadhyay P.K., da Costa D.B., Bithas P.S., Kanatas A.G., Dias U.S. Joint Impact of RF Hardware Impairments and Channel Estimation Errors in Spectrum Sharing Multiple-Relay Networks. IEEE Trans. Commun. 2018;2:3809–3824. doi: 10.1109/TCOMM.2018.2832623. DOI

Zarei S., Gerstacker W.H., Aulin J., Schober R. Multi-Cell Massive MIMO Systems with Hardware Impairments: Uplink-Downlink Duality and Downlink Precoding. IEEE Trans. Wirel. Commun. 2017;2:5115–5130. doi: 10.1109/TWC.2017.2705709. DOI

Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products. 7th ed. Elsevier Inc.; San Diego, CA, USA: 2007.

Duy T.T., Alexandropoulos G.C., Vu T.T., Vo N.-S., Duong T.Q. Outage Performance of Cognitive Cooperative Networks with Relay Selection over Double-Rayleigh Fading Channels. IET Commun. 2016;2:57–64. doi: 10.1049/iet-com.2015.0236. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...