Secrecy Performance Enhancement for Underlay Cognitive Radio Networks Employing Cooperative Multi-Hop Transmission with and without Presence of Hardware Impairments

. 2019 Feb 24 ; 21 (2) : . [epub] 20190224

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33266932

Grantová podpora
No. SP2018/59 and 102.04-2017.317 The research received a financial support from the SGS grant No. SP2018/59, VSB Technical University of Ostrava, Czech Republic and partially was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 10

In this paper, we consider a cooperative multi-hop secured transmission protocol to underlay cognitive radio networks. In the proposed protocol, a secondary source attempts to transmit its data to a secondary destination with the assistance of multiple secondary relays. In addition, there exists a secondary eavesdropper who tries to overhear the source data. Under a maximum interference level required by a primary user, the secondary source and relay nodes must adjust their transmit power. We first formulate effective signal-to-interference-plus-noise ratio (SINR) as well as secrecy capacity under the constraints of the maximum transmit power, the interference threshold and the hardware impairment level. Furthermore, when the hardware impairment level is relaxed, we derive exact and asymptotic expressions of end-to-end secrecy outage probability over Rayleigh fading channels by using the recursive method. The derived expressions were verified by simulations, in which the proposed scheme outperformed the conventional multi-hop direct transmission protocol.

Zobrazit více v PubMed

Ledwaba L.P.I., Hancke G.P., Venter H.S., Isaac S.J. Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices. IEEE Access. 2018;6:9303–9323. doi: 10.1109/ACCESS.2018.2793301. DOI

Liu Z., Choo K.-K.R., Grossschadl J. Securing Edge Devices in the Post-Quantum Internet of Things Using Lattice-Based Cryptography. IEEE Commun. Mag. 2018;56:158–162. doi: 10.1109/MCOM.2018.1700330. DOI

Wyner A.D. The Wire-tap Channel. Bell Syst. Tech. J. 1975;54:1355–1387. doi: 10.1002/j.1538-7305.1975.tb02040.x. DOI

Csiszar I., Korner J. Broadcast Channels With Confidential Messages. IEEE Trans. Inf. Theory. 1978;24:339–348. doi: 10.1109/TIT.1978.1055892. DOI

Gopala P.K., Lai L., Gamal H.E. On the secrecy capacity of fading channels. IEEE Trans. Inf. Theory. 2008;54:4687–4698. doi: 10.1109/TIT.2008.928990. DOI

Zhang J., Duong T.Q., Woods R., Marshall A. Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview. Entropy. 2017;19:420. doi: 10.3390/e19080420. DOI

Chang S., Li J., Fu X., Zhang L. Energy Harvesting for Physical Layer Security in Cooperative Networks Based on Compressed Sensing. Entropy. 2017;19:462. doi: 10.3390/e19090462. DOI

Sun L., Du Q. A Review of Physical Layer Security Techniques for Internet of Things: Challenges and Solutions. Entropy. 2018;20:730. doi: 10.3390/e20100730. PubMed DOI PMC

Wang L., Wong K.-K., Jin S., Zheng G., Heath R.W. A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-Dense Networks. IEEE Commun. Mag. 2018;56:49–55. doi: 10.1109/MCOM.2018.1700439. DOI

Kong L., Vuppala S., Kaddoum G. Secrecy Analysis of Random MIMO Wireless Networks Over α-μ Fading Channels. IEEE Trans. Veh. Technol. 2018;67:11654–11666. doi: 10.1109/TVT.2018.2872884. DOI

Jameel F., Wyne S., Kaddoum G., Duong T.Q. A Comprehensive Survey on Cooperative Relaying and Jamming Strategies for Physical Layer Security. IEEE Commun. Surv. Tutor. 2018 doi: 10.1109/COMST.2018.2865607. DOI

Krikidis I. Opportunistic Relay Selection For Cooperative Networks With Secrecy Constraints. IET Commun. 2010;4:1787–1791. doi: 10.1049/iet-com.2009.0634. DOI

Zhong B., Zhang Z. Secure Full-Duplex Two-Way Relaying Networks With Optimal Relay Selection. IEEE Commun. Lett. 2017;21:1123–1126. doi: 10.1109/LCOMM.2017.2655050. DOI

Kuhestani A., Mohammadi A., Mohammadi M. Joint Relay Selection and Power Allocation in Large-Scale MIMO Systems With Untrusted Relays and Passive Eavesdroppers. IEEE Trans. Inf. Forensics Secur. 2018;13:341–355. doi: 10.1109/TIFS.2017.2750102. DOI

Hu L., Wen H., Wu B., Pan F., Liao R.-F., Song H., Tang J., Wang X. Cooperative Jamming for Physical Layer Security Enhancement in Internet of Things. IEEE Int. Things J. 2018;5:219–228. doi: 10.1109/JIOT.2017.2778185. DOI

Ma H., Cheng J., Wang X., Ma P. Robust MISO Beamforming With Cooperative Jamming for Secure Transmission From Perspectives of QoS and Secrecy Rate. IEEE Trans. Commun. 2018;66:767–780. doi: 10.1109/TCOMM.2017.2765637. DOI

Zhang G., Xu J., Wu Q., Cui M., Li X., Lin F. Wireless Powered Cooperative Jamming for Secure OFDM System. IEEE Trans. Veh. Technol. 2018;67:1331–1346. doi: 10.1109/TVT.2017.2756877. DOI

Hu L., Wen H., Wu B., Tang J., Pan F., Liao R.-F. Cooperative-Jamming-Aided Secrecy Enhancement in Wireless Networks With Passive Eavesdroppers. IEEE Trans. Veh. Technol. 2018;67:2108–2117. doi: 10.1109/TVT.2017.2744660. DOI

Singh A., Bhatnagar M.R., Mallik R.K. Secrecy Outage of a Simultaneous Wireless Information and Power Transfer Cognitive Radio System. IEEE Wirel. Commun. Lett. 2016;5:288–291. doi: 10.1109/LWC.2016.2544828. DOI

Lei H., Zhang H., Ansari I.S., Pan G., Qaraqe K.A. Secrecy Outage Analysis for SIMO Underlay Cognitive Radio Networks over Generalized-K Fading Channels. IEEE Sig. Process. Lett. 2016;23:1106–1110. doi: 10.1109/LSP.2016.2587323. DOI

Zhao R., Yuan Y., Fan L., He Y.-C. Secrecy Performance Analysis of Cognitive Decode-and-Forward Relay Networks in Nakagami-m Fading Channels. IEEE Trans. Commun. 2017;65:549–563. doi: 10.1109/TCOMM.2016.2618793. DOI

Chakraborty P., Prakriva S. Secrecy Outage Performance of a Cooperative Cognitive Relay Network. IEEE Commun. Lett. 2017;21:326–329. doi: 10.1109/LCOMM.2016.2564380. DOI

Al-Hraishawi H., Baduge G.A.A., Schaefer R.F. Artificial Noise-Aided Physical Layer Security in Underlay Cognitive Massive MIMO Systems with Pilot Contamination. Entropy. 2017;19:349. doi: 10.3390/e19070349. DOI

Hung T., Georges K., Gagnon F., Louis S. Cognitive Radio Network with Secrecy and Interference Constraints. Phys. Commun. 2017;22:32–41.

Ping X., Ling X., Honghai W., Jung T.S., Ilsun Y. Cooperative Jammer Selection for Secrecy Improvement in Cognitive Internet of Things. Sensors. 2018;18:42–57. PubMed PMC

Feng R., Li Q., Zhang Q., Qin J. Robust Secure Beamforming in MISO Full-Duplex Two-Way Secure Communications. IEEE Trans. Veh. Technol. 2016;65:408–414. doi: 10.1109/TVT.2015.2394370. DOI

Sun C., Liu K., Zheng D., Ai W. Secure Communication for Two-Way Relay Networks with Imperfect CSI. Entropy. 2017;19:522. doi: 10.3390/e19100522. DOI

Jameel F., Wyne S., Ding Z. Secure Communications in Three-Step Two-Way Energy Harvesting DF Relaying. IEEE Commun. Lett. 2018;22:308–311. doi: 10.1109/LCOMM.2017.2772244. DOI

Zhang J., Tao X., Wu H., Zhang X. Secure Transmission in SWIPT-Powered Two-Way Untrusted Relay Networks. IEEE Access. 2018;6:10508–10519. doi: 10.1109/ACCESS.2018.2804903. DOI

Lee J.-H., Sohn I., Kim Y.-H. Transmit Power Allocation for Physical Layer Security in Cooperative Multi-Hop Full-Duplex Relay Networks. Sensors. 2016;16:1726. doi: 10.3390/s16101726. PubMed DOI PMC

Alotaibi E.R., Hamdi K.A. Secure Relaying in Multihop Communication Systems. IEEE Commun. Lett. 2016;20:1120–1123. doi: 10.1109/LCOMM.2016.2550025. DOI

Yao J., Liu Y. Secrecy Rate Maximization With Outage Constraint in Multihop Relaying Networks. IEEE Commun. Lett. 2018;22:304–307. doi: 10.1109/LCOMM.2017.2768513. DOI

Keshav S., Ku M.-L., Biswas S., Ratnarajah T. Energy-Efficient Subcarrier Pairing and Power Allocation for DF Relay Networks with an Eavesdropper. Energies. 2017;10:1953.

Björnson E., Matthaiou M., Debbah M. A new look at dual-hop relaying: Performance limits with hardware impairments. IEEE Trans. Commun. 2013;61:4512–4525. doi: 10.1109/TCOMM.2013.100913.130282. DOI

Matthaiou M., Papadogiannis A. Two-Way Relaying Under The Presence of Relay Transceiver Hardware Impairments. IEEE Commun. Lett. 2013;17:1136–1139. doi: 10.1109/LCOMM.2013.042313.130191. DOI

Björnson E., Hoydis J., Kountouris M., Debbah M. Massive MIMO Systems With Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits. IEEE Trans. Inf. Theory. 2014;60:7112–7139. doi: 10.1109/TIT.2014.2354403. DOI

Guo K., Guo D., Zhang B. Performance Analysis of Two-Way Multi-Antenna Multi-Relay Networks with Hardware Impairments. IEEE Access. 2017;5:15971–15980. doi: 10.1109/ACCESS.2017.2735451. DOI

Balti E., Guizani M., Hamdaoui B., Khalfi B. Aggregate Hardware Impairments Over Mixed RF/FSO Relaying Systems With Outdated CSI. IEEE Trans. Commun. 2018;66:1110–1123. doi: 10.1109/TCOMM.2017.2776261. DOI

Sharma P.K., Upadhyay P.K. Cognitive relaying with transceiver hardware impairments under interference constraints. IEEE Commun. Lett. 2016;20:820–823. doi: 10.1109/LCOMM.2016.2533500. DOI

Boulogeorgos A.A., Karas D.S., Karagiannidis G.K. How Much Does I/Q Imbalance Affect Secrecy Capacity? IEEE Commun. Lett. 2016;20:1305–1308. doi: 10.1109/LCOMM.2016.2558561. DOI

Zhu J., Ng D.W.K., Wang N., Schober R., Bhargava V.K. Analysis and Design of Secure Massive MIMO Systems in the Presence of Hardware Impairments. IEEE Trans. Wirel. Commun. 2017;16:2001–2016. doi: 10.1109/TWC.2017.2659724. DOI

Boshkovska E., Ng D.W.K., Dai L., Schober R. Power-Efficient and Secure WPCNs with Hardware Impairments and Non-Linear EH Circuit. IEEE Trans. Commun. 2018;66:2642–2657. doi: 10.1109/TCOMM.2017.2783628. DOI

Kuhestani A., Mohamadi A., Wong K.-K., Yeoh P.L., Moradikia M., Khandaker M.R.A. Optimal Power Allocation by Imperfect Hardware Analysis in Untrusted Relaying Networks. IEEE Trans. Wirel. Commun. 2018;17:4302–4314. doi: 10.1109/TWC.2018.2822286. DOI

Tin P.T., Hung D.T., Duy T.T., Voznak M. Analysis of Probability of Non-zero Secrecy Capacity for Multi-hop Networks in Presence of Hardware Impairments over Nakagami-m Fading Channels. RadioEngineering. 2016;25:774–782.

Wang L., Kim K.J., Duong T.Q., Elkashlan M., Poor H.V. Security Enhancement of Cooperative Single Carrier Systems. IEEE Trans. Inf. Forensics Secur. 2015;10:90–103. doi: 10.1109/TIFS.2014.2360437. DOI

Laneman J.N., Tse D.N.C., Wornell G.W. Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior. IEEE Trans. Inform. Theory. 2004;50:3062–3080. doi: 10.1109/TIT.2004.838089. DOI

Liu P., Tao Z., Lin Z., Erkip E., Panwar S. Cooperative Wireless Communications: A Cross-layer Approach. IEEE Wirel. Commun. 2006;13:84–92.

Bletsas A., Khisti A., Reed D.P., Lippman A. Simple Cooperative Diversity Method based on Network Path Selection. IEEE J. Sel. Areas Commun. 2006;24:659–672. doi: 10.1109/JSAC.2005.862417. DOI

Mo J., Tao M., Liu Y. Relay Placement for Physical Layer Security: A Secure Connection Perspective. IEEE Commun. Lett. 2012;16:878–881.

Cai C., Cai Y., Yang W., Yang W. Secure Connectivity Using Randomize-and-Forward Strategy in Cooperative Wireless Networks. IEEE Commun. Lett. 2013;17:1340–1343.

Vo N.Q.B., Duong T.Q., Tellambura C. On the Performance of Cognitive Underlay Multihop Networks with Imperfect Channel State Information. IEEE Trans. Commun. 2013;61:4864–4873.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...