Power beacon-assisted energy harvesting symbiotic radio networks: Outage performance

. 2025 ; 20 (2) : e0313981. [epub] 20250205

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39908254

The evolution of next-generation Internet-of-Things (IoT) in recent years exhibits a unique segment that wireless communication paradigms are oriented towards not only improved spectral efficiency transmission but also energy efficiency. This paper addresses these critical issues by proposing a novel communication model, namely power beacon-assisted energy-harvesting symbiotic radio. In particular, the limited energy primary IoT source communicates with its destination by first harvesting energy from a dedicated power beacon and then performing information exchange, while the backscatter device communicates by exploiting the available radio frequency emitted by the primary IoT source. The destination uses successive interference cancellation mechanisms to decode both its received signals. To assess the performance quality of the proposed communication model, we theoretically derive the coexistence outage probability (COP) in terms of highly accurate expressions and upper-bound and lower-bound approximations. Subsequently, we carry out a series of numerical results to verify the developed theory frameworks on the one hand, and on the other hand, analyze the COP performance against the variations of system key parameters (transmit signal-to-noise ratio, the time-splitting coefficient, the energy conversion efficiency factor, the reflection coefficient, and the coexistent decoding threshold). Our numerical results demonstrate that the proposed communication model can potentially work well in practices with reliable communication over 90% (COP is less than 0.1). Additionally, it also demonstrates that optimizing the reflection coefficient at the backscatter device can facilitate achieving minimal COP performance.

Zobrazit více v PubMed

Rose K, Eldridge S, Chapin L. The internet of things: An overview. The internet society (ISOC). 2015;80(15):1–53.

Qadir Z, Le KN, Saeed N, Munawar HS. Towards 6G Internet of Things: Recent advances, use cases, and open challenges. ICT Express. 2023;9(3):296–312. doi: 10.1016/j.icte.2022.06.006 DOI

Dai L, Wang B, Yuan Y, Han S, Chih-lin I, et al.. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun Mag. 2015;53(9):74–81. doi: 10.1109/MCOM.2015.7263349 DOI

Mao Y, Dizdar O, Clerckx B, Schober R, Popovski P, et al.. Rate-Splitting Multiple Access: Fundamentals, Survey, and Future Research Trends. IEEE Commun Surv Tutorials. 2022;24(4):2073–2126. doi: 10.1109/COMST.2022.3191937 DOI

Khasawneh M, Azab A, Alrabaee S, Sakkal H, Bakhit HH. Convergence of IoT and Cognitive Radio Networks: A Survey of Applications, Techniques, and Challenges. IEEE Access. 2023;11:71097–71112. doi: 10.1109/ACCESS.2023.3294091 DOI

Tran Tin P, The Hung D, Nguyen TN, Duy TT, Voznak M. Secrecy Performance Enhancement for Underlay Cognitive Radio Networks Employing Cooperative Multi-Hop Transmission with and without Presence of Hardware Impairments. Entropy. 2019;21(2):217. doi: 10.3390/e21020217 PubMed DOI PMC

Nguyen TT, Nguyen TV, Vu TH, da Costa DB, Ho CD. IoT-Based Coordinated Direct and Relay Transmission With Non-Orthogonal Multiple Access. IEEE Wireless Commun Lett. 2020;10(3):503–507. doi: 10.1109/LWC.2020.3035891 DOI

Nguyen TT, Vu TH, Nguyen TV, da Costa DB, Ho CD. Underlay Cognitive NOMA-Based Coordinated Direct and Relay Transmission. IEEE Wireless Commun Lett. 2020;10(4):854–858. doi: 10.1109/LWC.2020.3046779 DOI

Vu TH, Nguyen TV, Kim S. Wireless Powered Cognitive NOMA-Based IoT Relay Networks: Performance Analysis and Deep Learning Evaluation. IEEE IoT J. 2021;9(5):3913–3929.

Vu TH, Nguyen TV, da Costa DB, Kim S. Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference. IEEE Trans Commun. 2021;69(12):8159–8174. doi: 10.1109/TCOMM.2021.3110209 DOI

Nguyen TN, Tran M, Nguyen TL, Voznak M. Adaptive relaying protocol for decode and forward full-duplex system over Rician fading channel: System performance analysis. China Commun. 2019;16(3):92–102.

Nguyen TN, Tu LT, Tran DH, Phan VD, Voznak M, et al.. Outage Performance of Satellite Terrestrial Full-Duplex Relaying Networks With co-Channel Interference. IEEE Wireless Commun Lett. 2022;11(7):1478–1482. doi: 10.1109/LWC.2022.3175734 DOI

Tin PT, Luan NT, Nguyen TN, Tran M, Duy TT. Throughput enhancement for multi-hop decode-and-forward protocol using interference cancellation with hardware imperfection. Alexandria Engineering Journal. 2022;61(8):5837–5849. doi: 10.1016/j.aej.2021.11.008 DOI

Dung CT, Hoang TM, Thang NN, Tran M, Tran PT. Secrecy performance of multi-user multi-hop cluster-based network with joint relay and jammer selection under imperfect channel state information. Performance Evaluation. 2021;147:102193. doi: 10.1016/j.peva.2021.102193 DOI

Nguyen TN, Van Chien T, Tran DH, Phan VD, Voznak M, et al.. Security-Reliability Tradeoffs for Satellite–Terrestrial Relay Networks With a Friendly Jammer and Imperfect CSI. IEEE Trans Aerosp Electron Syst. 2023;59(5):7004–7019.

Minh BV, Tran M, Phan VD, Hieu N, et al.. D2D Communication Network with the Assistance of Power Beacon under the Impact of Co-channel Interferences and Eavesdropper: Performance Analysis. Advances in Electrical and Electronic Engineering. 2024;21(4):351–359.

Nguyen TN, Quang Minh TH, Tran PT, Voznak M, Duy TT, et al.. Performance enhancement for energy harvesting based two-way relay protocols in wireless ad-hoc networks with partial and full relay selection methods. Ad Hoc Networks. 2019;84:178–187. doi: 10.1016/j.adhoc.2018.10.005 DOI

Nguyen TN, Tran PT, Minh THQ, Voznak M, Sevcik L. Two-Way Half Duplex Decode and Forward Relaying Network with Hardware Impairment over Rician Fading Channel: System Performance Analysis. ELEKTRON ELEKTROTECH. 2018;24(2):74–78. doi: 10.5755/j01.eie.24.2.20639 DOI

Tin PT, Nguyen TN, Tran M, Trang TT, Sevcik L. Exploiting Direct Link in Two-Way Half-Duplex Sensor Network over Block Rayleigh Fading Channel: Upper Bound Ergodic Capacity and Exact SER Analysis. Sensors. 2020;20(4):1165. doi: 10.3390/s20041165 PubMed DOI PMC

Vu TH, Kim S. Performance Analysis of Full-Duplex Two-Way RIS-Based Systems With Imperfect CSI and Discrete Phase-Shift Design. IEEE Commun Lett. 2022;27(2):512–516. doi: 10.1109/LCOMM.2022.3231290 DOI

Vu TH, Pham QV, Kim S. On Performance of Downlink THz-Based Rate-Splitting Multiple-Access (RSMA): Is it Always Better Than NOMA? IEEE Trans Veh Technol. 2023;73(3):4435–4440. doi: 10.1109/TVT.2023.3325244 DOI

Vu TH, Pham QV, da Costa DB, Kim S. Rate-Splitting Multiple Access-Assisted THz-Based Short-Packet Communications. IEEE Wireless Commun Lett. 2023;12(12):2218–2222. doi: 10.1109/LWC.2023.3315751 DOI

Vu TH, Nguyen TV, da Costa DB, Kim S. Intelligent Reflecting Surface-Aided Short-Packet Non-Orthogonal Multiple Access Systems. IEEE Trans Veh Technol. 2022;71(4):4500–4505. doi: 10.1109/TVT.2022.3146856 DOI

Vu TH, Nguyen TV, da Costa DB, Kim S. Reconfigurable Intelligent Surface-Aided Cognitive NOMA Networks: Performance Analysis and Deep Learning Evaluation. IEEE Trans Wireless Commun. 2022;21(12):10662–10677. doi: 10.1109/TWC.2022.3185749 DOI

Bi S, Zeng Y, Zhang R. Wireless powered communication networks: an overview. IEEE Wireless Commun. 2016;23(2):10–18. doi: 10.1109/MWC.2016.7462480 DOI

Krikidis I, Timotheou S, Nikolaou S, Zheng G, Ng DWK, et al.. Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun Mag. 2014;52(11):104–110. doi: 10.1109/MCOM.2014.6957150 DOI

Nguyen TN, Quang Minh TH, Tran PT, Vozňák M. Energy Harvesting over Rician Fading Channel: A Performance Analysis for Half-Duplex Bidirectional Sensor Networks under Hardware Impairments. Sensors. 2018;18(6):1781. doi: 10.3390/s18061781 PubMed DOI PMC

Nguyen TN, Tran M, Nguyen TL, Ha DH, Voznak M. Performance Analysis of a User Selection Protocol in Cooperative Networks with Power Splitting Protocol-Based Energy Harvesting Over Nakagami-m/Rayleigh Channels. Electronics. 2019;8(4):448. doi: 10.3390/electronics8040448 DOI

Hoang TM, Nguyen BC, Thang NN, Tran M, Tran PT. Performance and optimal analysis of time-switching energy harvesting protocol for MIMO full-duplex decode-and-forward wireless relay networks with various transmitter and receiver diversity techniques. J Franklin Inst. 2020;357(17):13205–13230. doi: 10.1016/j.jfranklin.2020.09.037 DOI

Tin PT, Dinh BH, Nguyen TN, Ha DH, Trang TT. Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis. Symmetry. 2020;12(1):106. doi: 10.3390/sym12010106 DOI

Vu TH, Kim S. Performance Evaluation of Power-Beacon-Assisted Wireless-Powered NOMA IoT-Based Systems. IEEE IoT J. 2021;8(14):11655–11665.

Tran M, Tu LT, Minh BV, Nguyen QS, Rejfek L, et al.. Security and Reliability Analysis of the Power Splitting-Based Relaying in Wireless Sensors Network. Sensors. 2024;24(4):1300. doi: 10.3390/s24041300 PubMed DOI PMC

Nguyen TN, Tran DH, Van Chien T, Phan VD, Voznak M, et al.. Security–Reliability Tradeoff Analysis for SWIPT- and AF-Based IoT Networks With Friendly Jammers. IEEE IoT J. 2022;9(21):21662–21675.

Liu W, Huang K, Zhou X, Durrani S. Next generation backscatter communication: systems, techniques, and applications. J Wireless Com Network. 2019;2019(1):1–11. doi: 10.1186/s13638-015-0498-8 DOI

Long R, Liang YC, Guo H, Yang G, Zhang R. Symbiotic Radio: A New Communication Paradigm for Passive Internet of Things. IEEE IoT J. 2019;7(2):1350–1363.

Long R, Guo H, Zhang L, Liang YC. Full-Duplex Backscatter Communications in Symbiotic Radio Systems. IEEE Access. 2019;7:21597–21608. doi: 10.1109/ACCESS.2019.2898474 DOI

Guo H, Liang YC, Long R, Zhang Q. Cooperative Ambient Backscatter System: A Symbiotic Radio Paradigm for Passive IoT. IEEE Wireless Commun Lett. 2019;8(4):1191–1194. doi: 10.1109/LWC.2019.2911500 DOI

Janjua MB, Arslan H. Survey on symbiotic radio: A paradigm shift in spectrum sharing and coexistence. arXiv preprint arXiv:211108948. 2021;.

Yang H, Ding H, Elkashlan M. Opportunistic Symbiotic Backscatter Communication Systems. IEEE Commun Lett. 2022;27(1):100–104. doi: 10.1109/LCOMM.2022.3202362 DOI

Liang YC, Zhang Q, Larsson EG, Li GY. Symbiotic Radio: Cognitive Backscattering Communications for Future Wireless Networks. IEEE Trans Cognit Commun Networking. 2020;6(4):1242–1255. doi: 10.1109/TCCN.2020.3023139 DOI

Chu Z, Hao W, Xiao P, Khalily M, Tafazolli R. Resource Allocations for Symbiotic Radio With Finite Blocklength Backscatter Link. IEEE IoT J. 2020;7(9):8192–8207.

Do QV, Minh BV, Nguyen QS, Kim Bs. Analysis of symbiotic backscatter empowered wireless sensors network with short-packet communications. PLoS One. 2024;19(8):e0307366. doi: 10.1371/journal.pone.0307366 PubMed DOI PMC

Yang H, Ye Y, Liang K, Chu X. Energy Efficiency Maximization for Symbiotic Radio Networks With Multiple Backscatter Devices. IEEE Open J Commun Soc. 2021;2:1431–1444. doi: 10.1109/OJCOMS.2021.3090836 DOI

Wu T, Jiang M, Zhang Q, Li Q, Qin J. Beamforming Design in Multiple-Input-Multiple-Output Symbiotic Radio Backscatter Systems. IEEE Commun Lett. 2021;25(6):1949–1953. doi: 10.1109/LCOMM.2021.3060468 DOI

Ataeeshojai M, Elliott RC, Krzymień WA, Tellambura C, Maljević I. Symbiotic Backscatter Communication Underlying a Cell-Free Massive MIMO System. IEEE IoT J. 2023;10(19):16758–16777.

Kuai X, Yuan X, Liang YC. Message-Passing Receiver Design for Multiuser Multi-Backscatter-Device Symbiotic Radio Communications. IEEE Trans Wireless Commun. 2021;21(6):4563–4578. doi: 10.1109/TWC.2021.3131244 DOI

Yi Y, Hu X, Kai C, Huang W. Resource Allocation Design for RIS-enhanced Backscatter Wireless-powered Symbiotic Networks. IEEE Trans Cognit Commun Networking. 2024; p. 1. doi: 10.1109/TCOMM.2024.3468215 DOI

Ren C, Liu L. Toward Full Passive Internet of Things: Symbiotic Localization and Ambient Backscatter Communication. IEEE IoT J. 2023;10(22):19495–19506.

Vu TH, Da Costa DB, Quoc BVN, Kim S. A Novel Paradigm Shift for Next-Generation: Symbiotic Backscatter Rate-Splitting Multiple Access Systems. In: 2024 Tenth International Conference on Communications and Electronics (ICCE). IEEE;. p. 2024–02.

Vu TH, Nguyen TV, Kim S. Cooperative NOMA-Enabled SWIPT IoT Networks With Imperfect SIC: Performance Analysis and Deep Learning Evaluation. IEEE IoT J. 2021;9(3):2253–2266.

Liang YC, Long R, Zhang Q, Niyato D. Symbiotic Communications: Where Marconi Meets Darwin. IEEE Wireless Commun. 2022;29(1):144–150. doi: 10.1109/MWC.101.2100132 DOI

Jeffrey A, Zwillinger D. Table of integrals, series, and products. Elsevier; 2007.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...