Energy Harvesting over Rician Fading Channel: A Performance Analysis for Half-Duplex Bidirectional Sensor Networks under Hardware Impairments
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
29865193
PubMed Central
PMC6022185
DOI
10.3390/s18061781
PII: s18061781
Knihovny.cz E-resources
- Keywords
- Rician fading channel, half-duplex, hardware impairment, relay networks, time-switching, wireless energy harvesting,
- Publication type
- Journal Article MeSH
In this paper, a rigorous analysis of the performance of time-switching energy harvesting strategy that is applied for a half-duplex bidirectional wireless sensor network with intermediate relay over a Rician fading channel is presented to provide the exact-form expressions of the outage probability, achievable throughput and the symbol-error-rate (SER) of the system under the hardware impairment condition. Using the proposed probabilistic models for wireless channels between mobile nodes as well as for the hardware noises, we derive the outage probability of the system, and then the throughput and SER can be obtained as a result. Both exact analysis and asymptotic analysis at high signal-power-to-noise-ratio regime are provided. Monte Carlo simulation is also conducted to verify the analysis. This work confirms the effectiveness of energy harvesting applied in wireless sensor networks over a Rician fading channel, and can provide an insightful understanding about the effect of various parameters on the system performance.
See more in PubMed
De Rango F., Lonetti P., Marano S. MEA-DSR: A multipath energy-aware routing protocol for wireless Ad Hoc Networks. IFIP Int. Fed. Inf. Process. 2008;265:215–225. doi: 10.1007/978-0-387-09490-8_19. DOI
Nguyen H.S., Do D.T., Voznak M. Two-way relaying networks in green communications for 5G: Optimal throughput and trade-off between relay distance on power splitting-based and time switching-based relaying SWIPT. AEU-Int. J. Electron. Commun. 2016;70:1637–1644. doi: 10.1016/j.aeue.2016.10.002. DOI
Nguyen H.S., Bui A.H., Do D.T., Voznak M. Imperfect channel state information of AF and DF energy harvesting cooperative networks. China Commun. 2016;13:11–19. doi: 10.1109/CC.2016.7732008. DOI
Chu Z., Zhou F., Zhu Z., Hu R.Q., Xiao P. Wireless Powered Sensor Networks for Internet of Things: Maximum Throughput and Optimal Power Allocation. IEEE Internet Things J. 2018;5:310–321. doi: 10.1109/JIOT.2017.2782367. DOI
Mekikis P.V., Lalos A.S., Antonopoulos A., Alonso L., Verikoukis C. Wireless Energy Harvesting in Two-Way Network Coded Cooperative Communications: A Stochastic Approach for Large Scale Networks. IEEE Commun. Lett. 2014;18:1011–1014. doi: 10.1109/LCOMM.2014.2320926. DOI
Sudevalayam S., Kulkarni P. Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Commun. Surv. Tutor. 2011;13:443–461. doi: 10.1109/SURV.2011.060710.00094. DOI
Guo S., Wang F., Yang Y., Xiao B. Energy-Efficient Cooperative Tfor Simultaneous Wireless Information and Power Transfer in Clustered Wireless Sensor Networks. IEEE Trans. Commun. 2015;63:4405–4417. doi: 10.1109/TCOMM.2015.2478782. DOI
Fotino M., Gozzi A., Cano J.C., Calafate C., Rango F., Manzoni P., Marano S. Evaluating energy consumption of proactive and reactive routing protocols in a MANET. IFIP Int. Fed. Inf. Process. 2007;248:119–130. doi: 10.1007/978-0-387-74899-3_11. DOI
Mekikis P.V., Antonopoulos A., Kartsakli E., Lalos A.S., Alonso L., Verikoukis C. Information Exchange in Randomly Deployed Dense WSNs with Wireless Energy Harvesting Capabilities. IEEE Trans. Wirel. Commun. 2016;15:3008–3018. doi: 10.1109/TWC.2016.2514419. DOI
Wang C., Li J., Yang Y., Ye F. Combining Solar Energy Harvesting with Wireless Charging for Hybrid Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2018;17:560–576. doi: 10.1109/TMC.2017.2732979. DOI
Kosunalp S. An energy prediction algorithm for wind-powered wireless sensor networks with energy harvesting. Energy. 2017;139:1275–1280.
Prijić A., Vračar L., Vučković D., Milić D., Prijić Z. Thermal Energy Harvesting Wireless Sensor Node in Aluminum Core PCB Technology. IEEE Sens. J. 2015;15:337–345. doi: 10.1109/JSEN.2014.2343932. DOI
Guo S., Wang C., Yang Y. Joint Mobile Data Gathering and Energy Provisioning in Wireless Rechargeable Sensor Networks. IEEE Trans. Mob. Comput. 2014;13:2836–2852. doi: 10.1109/TMC.2014.2307332. DOI
Perera T.D.P., Jayakody D.N.K., Sharma S.K., Chatzinotas S., Li J. Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges. IEEE Commun. Surv. Tutor. 2018;20:264–302. doi: 10.1109/COMST.2017.2783901. DOI
Nguyen H.S., Nguyen T.S., Voznak M. Relay selection for SWIPT: Performance analysis of optimization problems and the trade-off between ergodic capacity and energy harvesting. AEU-Int. J. Electron. Commun. 2018;85:59–67. doi: 10.1016/j.aeue.2017.12.012. DOI
Varshney L.R. Transporting information and energy simultaneously; Proceedings of the 2008 IEEE International Symposium on Information Theory; Toronto, ON, Canada. 6–11 July 2008; pp. 1612–1616.
Zhou X., Zhang R., Ho C.K. Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff. IEEE Trans. Commun. 2013;61:4754–4767. doi: 10.1109/TCOMM.2013.13.120855. DOI
Nasir A.A., Zhou X., Durrani S., Kennedy R.A. Relaying Protocols for Wireless Energy Harvesting and Information Processing. IEEE Trans. Wirel. Commun. 2013;12:3622–3636. doi: 10.1109/TWC.2013.062413.122042. DOI
Peng C., Li F., Liu H. Wireless Energy Harvesting Two-Way Relay Networks with Hardware Impairments. Sensors. 2017;17:2604. doi: 10.3390/s17112604. PubMed DOI PMC
Mouapi A., Hakem N. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System. Sensors. 2018;18:133. doi: 10.3390/s18010133. PubMed DOI PMC
Le Q.N., Bao V.N.Q., An B. Full-duplex distributed switch-and-stay energy harvesting selection relaying networks with imperfect CSI: Design and outage analysis. J. Commun. Netw. 2018;20:29–46. doi: 10.1109/JCN.2018.000004. DOI
Nguyen D.K., Jayakody D.N.K., Chatzinotas S., Thompson J.S., Li J. Wireless Energy Harvesting Assisted Two-Way Cognitive Relay Networks: Protocol Design and Performance Analysis. IEEE Access. 2017;5:21447–21460. doi: 10.1109/ACCESS.2016.2644758. DOI
Olofsson T., Ahlén A., Gidlund M. Modeling of the Fading Statistics of Wireless Sensor Network Channels in Industrial Environments. IEEE Trans. Signal Process. 2016;64:3021–3034. doi: 10.1109/TSP.2016.2539142. DOI
Zhao F., Lin H., Zhong C., Hadzi-Velkov Z., Karagiannidis G.K., Zhang Z. On the Capacity of Wireless Powered Communication Systems over Rician Fading Channels. IEEE Trans. Commun. 2018;66:404–417. doi: 10.1109/TCOMM.2017.2754488. DOI
Hu Y., Cao N., Chen Y. Analysis of Wireless Energy Harvesting Relay Throughput in Rician Channel. Mob. Inf. Syst. 2016;2016 doi: 10.1155/2016/8798494. DOI
Mishra D., De S., Chiasserini C.F. Joint Optimization Schemes for Cooperative Wireless Information and Power Transfer over Rician Channels. IEEE Trans. Commun. 2016;64:554–571.
Schenk T. RF Imperfections in High-Rate Wireless Systems: Impact and Digital Compensation. 1st ed. Springer; New York, NY, USA: 2008.
Bjornson E., Matthaiou M., Debbah M. A New Look at Dual-Hop Relaying: Performance Limits with Hardware Impairments. IEEE Trans. Commun. 2013;61:4512–4525.
Nguyen T.N., Duy T.T., Luu G.T., Tran P.T., Voznak M. Energy Harvesting-based Spectrum Access with Incremental Cooperation, Relay Selection and Hardware Noises. Radioengineering. 2017;10:240–250. doi: 10.13164/re.2016.0001. DOI
Katti S., Gollakota S., Katabi D. Embracing Wireless Interference: Analog Network Coding. SIGCOMM Comput. Commun. Rev. 2007;37:397–408. doi: 10.1145/1282427.1282425. DOI
Qin J., Zhu Y., Zhe P. Broadband Analog Network Coding with Robust Processing for Two-Way Relay Networks. IEEE Commun. Lett. 2017;21:1115–1118. doi: 10.1109/LCOMM.2017.2656882. DOI
Zwillinger D., Moll V., Gradshteyn I., Ryzhik I. In: Table of Integrals, Series, and Products. 8th ed. Zwillinger D., editor. Academic Press; Boston, MA, USA: 2015.
Bhatnagar M.R. On the Capacity of Decode-and-Forward Relaying over Rician Fading Channels. IEEE Commun. Lett. 2013;17:1100–1103. doi: 10.1109/LCOMM.2013.050313.122813. DOI
McKay M.R., Grant A.J., Collings I.B. Performance Analysis of MIMO-MRC in Double-Correlated Rayleigh Environments. IEEE Trans. Commun. 2007;55:497–507. doi: 10.1109/TCOMM.2007.892450. DOI
Duong T.Q., Duy T.T., Matthaiou M., Tsiftsis T., Karagiannidis G.K. Cognitive cooperative networks in dual-hop asymmetric fading channels; Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM); Atlanta, GA, USA. 9–13 December 2013; pp. 955–961.
Chong E.K.P., Zak S.H. An Introduction to Optimization. 3rd ed. John Wiley & Sons; Hoboken, NJ, USA: 2013.
Morosi C., Pizzocchero L. On the expansion of the Kummer function in terms of incomplete Gamma functions. Arch. Inequal. Appl. 2004;2:49–72.
Power beacon-assisted energy harvesting symbiotic radio networks: Outage performance
Security and Reliability Analysis of the Power Splitting-Based Relaying in Wireless Sensors Network