Exploiting Direct Link in Two-Way Half-Duplex Sensor Network over Block Rayleigh Fading Channel: Upper Bound Ergodic Capacity and Exact SER Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32093275
PubMed Central
PMC7070604
DOI
10.3390/s20041165
PII: s20041165
Knihovny.cz E-zdroje
- Klíčová slova
- SER, energy harvesting (EH), ergodic capacity (EC), sensors network, two-way,
- Publikační typ
- časopisecké články MeSH
Relay communication, in which the relay forwards the signal received by a source to a destination, has a massive consideration in research, due to its ability to expand the coverage, increase the capacity, and reduce the power consumption. In this paper, we proposed and investigated energy harvesting (EH) based two-way half-duplex (TWHD) relaying sensors network using selection combining (SC) over block Rayleigh fading channel. In this model, we proposed the direct link between two sources for improving the system performance. For the system performance analysis, we investigated and derived the closed-form of the exact and upper bound Ergodic capacity (EC) and the exact form of the symbol error ratio (SER). By using the Monte Carlo simulation, the correctness of the research results is verified in the influence of the main system parameters. From the discussions, we can see that the analytical and simulation agree well with each other.
Zobrazit více v PubMed
Bi S., Ho C.K., Zhang R. Wireless powered communication: Opportunities and challenges. IEEE Commun. Mag. 2015;53:117–125. doi: 10.1109/MCOM.2015.7081084. DOI
Niyato D., Kim D.I., Maso M., Han Z. Wireless Powered Communication Networks: Research Directions and Technological Approaches. IEEE Wirel. Commun. 2017;24:2–11. doi: 10.1109/MWC.2017.1600116. PubMed DOI
Yu H., Lee H., Jeon H. What is 5G? Emerging 5G Mobile Services and Network Requirements. Sustainability. 2017;9:1848. doi: 10.3390/su9101848. DOI
Salem A., Khairi A.H., Khaled M.R. Physical Layer Security with RF Energy Harvesting in AF Multi-Antenna Relaying Networks. IEEE Trans. Commun. 2016;64:3025–3038. doi: 10.1109/TCOMM.2016.2573829. DOI
Liu W., Zhou X., Durrani S., Popovski P. Secure Communication with a Wireless-Powered Friendly Jammer. IEEE Trans. Wirel. Commun. 2016;15:401–415. doi: 10.1109/TWC.2015.2474378. DOI
Varshney L.R. Transporting Information Energy Simultaneously; Proceedings of the 2008 IEEE International Symposium on Information Theory; Toronto, ON, Canada. 6–11 July 2008; DOI
Zhou X., Zhang R., Ho C.K. Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff. IEEE Trans. Commun. 2013;61:4754–4767. doi: 10.1109/TCOMM.2013.13.120855. DOI
Liu L., Zhang R., Chua C.-K. Wireless Information Transfer with Opportunistic Energy Harvesting. IEEE Trans. Wirel. Commun. 2013;12:288–300. doi: 10.1109/TWC.2012.113012.120500. DOI
Xiang Z., Tao M. Robust Beamforming for Wireless Information and Power Transmission. IEEE Wirel. Commun. Lett. 2012;1:372–375. doi: 10.1109/WCL.2012.053112.120212. DOI
Bhargav M., Mehta N.B. Voluntary Energy Harvesting Relays and Selection in Cooperative Wireless Networks. IEEE Trans. Wirel. Commun. 2010;9:3543–3553. doi: 10.1109/twc.2010.091510.100447. DOI
Nasir A.A., Zhou X., Durrani S., Kennedy R.A. Relaying Protocols for Wireless Energy Harvesting and Information Processing. IEEE Trans. Wirel. Commun. 2013;12:3622–3636. doi: 10.1109/TWC.2013.062413.122042. DOI
Grover P., Sahai A. Shannon Meets Tesla: Wireless Information and Power Transfer; Proceedings of the 2010 IEEE International Symposium on Information Theory; Austin, TX, USA. 13–18 June 2010; DOI
Huang K., Lau V.K.N. Enabling Wireless Power Transfer in Cellular Networks: Architecture, Modeling and Deployment. IEEE Trans. Wirel. Commun. 2014;13:902–912. doi: 10.1109/TWC.2013.122313.130727. DOI
Nguyen T.N., Minh T., Long N.T., Hung D.H., Voznak M. Multisource Power Splitting Energy Harvesting Relaying Network in Half-Duplex System over Block Rayleigh Fading Channel: System Performance Analysis. Electronics. 2019;8:67. doi: 10.3390/electronics8010067. DOI
Shi Q., Liu L., Xu W., Zhang R. Joint Transmit Beamforming and Receive Power Splitting for MISO SWIPT Systems. IEEE Trans. Wirel. Commun. 2014;13:3269–3280. doi: 10.1109/TWC.2014.041714.131688. DOI
Zhang R., Ho C.K. MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer. IEEE Trans. Wirel. Commun. 2013;12:1989–2001. doi: 10.1109/TWC.2013.031813.120224. DOI
Ju H., Zhang R. Throughput Maximization in Wireless Powered Communication Networks. IEEE Trans. Wirel. Commun. 2014;13:418–428. doi: 10.1109/TWC.2013.112513.130760. DOI
Krikidis I., Timotheou S., Sasaki S. RF Energy Transfer for Cooperative Networks: Data Relaying or Energy Harvesting? IEEE Commun. Lett. 2012;16:1772–1775. doi: 10.1109/LCOMM.2012.091712.121395. DOI
Michalopoulos D.S., Suraweera H.A., Schober R. Relay Selection for Simultaneous Information Transmission and Wireless Energy Transfer: A Tradeoff Perspective. IEEE J. Sel. Areas Commun. 2015;1 doi: 10.1109/JSAC.2015.2391771. DOI
Park J., Clerckx B. Joint Wireless Information and Energy Transfer in a Two-User MIMO Interference Channel. IEEE Trans. Wirel. Commun. 2013;12:4210–4221. doi: 10.1109/TWC.2013.071913.130084. DOI
Park J., Clerckx B. Joint Wireless Information and Energy Transfer with Reduced Feedback in MIMO Interference Channels. IEEE J. Sel. Areas Commun. 2015;1 doi: 10.1109/JSAC.2015.2391684. DOI
Ding Z., Perlaza S.M., Esnaola I., Poor H.V. Power Allocation Strategies in Energy Harvesting Wireless Cooperative Networks. IEEE Trans. Wirel. Commun. 2014;13:846–860. doi: 10.1109/TWC.2013.010213.130484. DOI
Chen Z., Xia B., Liu H. Wireless Information and Power Transfer in Two-way Amplify-and-forward Relaying Channels; Proceedings of the 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP); Atlanta, GA, USA. 3–5 December 2014; DOI
Krikidis I., Sasaki S., Timotheou S., Ding Z. A Low Complexity Antenna Switching for Joint Wireless Information and Energy Transfer in MIMO Relay Channels. IEEE Trans. Commun. 2014;62:1577–1587. doi: 10.1109/TCOMM.2014.032914.130722. DOI
Tin P.T., Hung D.T., Nguyen T., Duy T., Voznak M. Secrecy Performance Enhancement for Underlay Cognitive Radio Networks Employing Cooperative Multi-Hop Transmission with and without Presence of Hardware Impairments. Entropy. 2019;21:217. doi: 10.3390/e21020217. PubMed DOI PMC
Tran H.D., Tran D.T., Choi S.G. Secrecy Performance of a Generalized Partial Relay Selection Protocol in Underlay Cognitive Networks. Int. J. Commun. Syst. 2018;31 doi: 10.1002/dac.3806. DOI
Nguyen T.L.N., Shin Y. Performance Analysis for Energy Harvesting Based Wireless Relay Systems; Proceedings of the 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS); Singapore. 28–30 August 2019; DOI
Gui L., He B., Zhou X., Yu C., Shu F., Li J. Energy-Efficient Wireless Powered Secure Transmission with Cooperative Jamming for Public Transportation. IEEE Trans. Green Commun. Netw. 2019;3:876–885. doi: 10.1109/TGCN.2019.2930072. DOI
Bhowmick A., Chatterjee A., Verma T. Performance of DF Relaying in an Energy Harvesting Full Duplex Cognitive Radio Network; Proceedings of the 2019 International Conference on Vision towards Emerging Trends in Communication and Networking (ViTECoN); Vellore, India. 30–31 March 2019; DOI
Zhao M., Zhao J., Zhou W., Zhu J., Zhang S. Energy Efficiency Optimization in Relay-assisted Networks with Energy Harvesting Relay Constraints. China Commun. 2015;12:84–94. doi: 10.1109/CC.2015.7084404. DOI
Nguyen T.N., Minh Q., Hoang T., Tran P.T., Vozňák M. Energy Harvesting over Rician Fading Channel: A Performance Analysis for Half-Duplex Bidirectional Sensor Networks under Hardware Impairments. Sensors. 2018;18:1781. doi: 10.3390/s18061781. PubMed DOI PMC
Bhatnagar M.R. On the Capacity of Decode-and-Forward Relaying over Rician Fading Channels. IEEE Commun. Lett. 2013;17:1100–1103. doi: 10.1109/LCOMM.2013.050313.122813. DOI
Nguyen T.N., Minh TH Q., Tran P.T., Voznak M., Duy T.T., Nguyen T.L., Tin P.T. Performance Enhancement for Energy Harvesting Based Two-Way Relay Protocols in Wireless Ad-hoc Networks with Partial and Full Relay Selection Methods. Ad Hoc Netw. 2019;84:178–187. doi: 10.1016/j.adhoc.2018.10.005. DOI
Luo S., Zhang R., Lim T.J. Optimal save-then-transmit protocol for energy harvesting wireless transmitters. IEEE Trans. Wirel. Commun. 2013;13:1196–1207. doi: 10.1109/TWC.2013.012413.120488. DOI
Nguyen T.N., Minh TH Q., Tran P.T., Voznak M. Adaptive Energy Harvesting Relaying Protocol for Two-Way Half Duplex System Network over Rician Fading Channel. Wirel. Commun. Mob. Comput. 2018;2018:7693016. doi: 10.1155/2018/7693016. DOI
Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products. Elsevier; San Diego, CA, USA: 2015.
McKay M.R., Grant A.J., Collings I.B. Performance analysis of MIMO-MRC in double-correlated Rayleigh environments. IEEE Trans. Commun. 2007;55:497–507. doi: 10.1109/TCOMM.2007.892450. DOI
Chu Z., Zhou F., Zhu Z., Hu R.Q., Xiao P. Wireless Powered Sensor Networks for Internet of Things: Maximum Throughput and Optimal Power Allocation. IEEE Internet Things J. 2018;5:310–321. doi: 10.1109/JIOT.2017.2782367. DOI
Wang C.-X., Haider F., Gao X., You X.-H., Yang Y., Yuan D., Aggoune H., Haas H., Fletcher S., Hepsaydir E. Cellular Architecture and Key Technologies for 5G Wireless Communication Networks. IEEE Commun. Mag. 2014;52:122–130. doi: 10.1109/MCOM.2014.6736752. DOI
Valenta C.R., Durgin G.D. Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 2014;15:108–120.
Louie R.H.Y., Li Y., Vucetic B. Practical physical layer network coding for two-way relay channels: Performance analysis and comparison. IEEE Trans. Wirel. Commun. 2010;9:764–777. doi: 10.1109/TWC.2010.02.090314. DOI
Phan V.D., Nguyen T.N., Tran M., Trang T.T., Voznak M., Ha D.H., Nguyen T.L. Power Beacon-Assisted Energy Harvesting in a Half-Duplex Communication Network under Co-Channel Interference over a Rayleigh Fading Environment: Energy Efficiency and Outage Probability Analysis. Energies. 2019;12:2579. doi: 10.3390/en12132579. DOI
Nguyen T.N., Tran M., Ha D.H., Trang T.T., Vozňák M. Multi-Source in DF Cooperative Networks with PSR protocol Based Full-Duplex Energy Harvesting over Rayleigh Fading Channel: Performance Analysis. Proc. Est. Acad. Sci. 2019;68:264–275. doi: 10.3176/proc.2019.3.03. DOI
Nguyen T.N., Tran M., Ha D.H., Nguyen T.L., Vozňák M. Energy harvesting based two-way full-duplex relaying network over Rician fading environment: Performance analysis. Proc. Est. Acad. Sci. 2019;68:111–123. doi: 10.3176/proc.2019.1.11. DOI
Li L., Cimini L.J., Xia X.G. Impact of Direct Link on Outage of Cooperative Full-Duplex Relaying; Proceedings of the 2015 49th Annual Conference on Information Sciences and Systems (CISS); Baltimore, MD, USA. 18–20 March 2015; DOI
Power beacon-assisted energy harvesting symbiotic radio networks: Outage performance