A Study of Physical Layer Security in SWIPT-Based Decode-and-Forward Relay Networks with Dynamic Power Splitting
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34502582
PubMed Central
PMC8433674
DOI
10.3390/s21175692
PII: s21175692
Knihovny.cz E-zdroje
- Klíčová slova
- SWIPT, decode-and-forward, outage probability, relay selection, secrecy outage probability,
- Publikační typ
- časopisecké články MeSH
In this paper, we study the physical layer security for simultaneous wireless information and power transfer (SWIPT)-based half-duplex (HD) decode-and-forward relaying system. We consider a system model including one transmitter that tries to transmit information to one receiver under the help of multiple relay users and in the presence of one eavesdropper that attempts to overhear the confidential information. More specifically, to investigate the secrecy performance, we derive closed-form expressions of outage probability (OP) and secrecy outage probability for dynamic power splitting-based relaying (DPSBR) and static power splitting-based relaying (SPSBR) schemes. Moreover, the lower bound of secrecy outage probability is obtained when the source's transmit power goes to infinity. The Monte Carlo simulations are given to corroborate the correctness of our mathematical analysis. It is observed from simulation results that the proposed DPSBR scheme outperforms the SPSBR-based schemes in terms of OP and SOP under the impact of different parameters on system performance.
Zobrazit více v PubMed
Jasiński M., Majtczak P., Malinowski A. Fuzzy logic in decision support system as a simple Human/Internet of Things interface for shunt active power filter. Bull. Pol. Acad. Sci. Tech. Sci. 2016;64:877–886. doi: 10.1515/bpasts-2016-0096. DOI
Kiciński J. Green energy transformation in Poland. Bull. Pol. Acad. Sci. Tech. Sci. 2021;69 doi: 10.24425/bpasts.2020.136213. DOI
Nguyen P.X., Tran D.H., Onireti O., Tin P.T., Nguyen S.Q., Chatzinotas S., Vincent Poor H. Backscatter-Assisted Data Offloading in OFDMA-Based Wireless-Powered Mobile Edge Computing for IoT Networks. IEEE Internet Things J. 2021;8:9233–9243. doi: 10.1109/JIOT.2021.3057360. DOI
Cong R., Zhao Z., Min G., Feng C., Jiang Y. EdgeGO: A Mobile Resource-sharing Framework for 6G Edge Computing in Massive IoT Systems. IEEE Internet Things J. 2021 doi: 10.1109/JIOT.2021.3065357. DOI
Fang X., Feng W., Wei T., Chen Y., Ge N., Wang C.X. 5G Embraces Satellites for 6G Ubiquitous IoT: Basic Models for Integrated Satellite Terrestrial Networks. IEEE Internet Things J. 2021 doi: 10.1109/JIOT.2021.3068596. DOI
Tran D.H., Nguyen V.D., Symeon C., Vu X.T., Bjorn O. UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization. arXiv. 20202008.00218
Jung H.J., Park J., Kim I.H. Investigation of Applicability of Electromagnetic Energy Harvesting System to Inclined Stay Cable Under Wind Load. IEEE Trans. Magn. 2012;48:3478–3481. doi: 10.1109/TMAG.2012.2202889. DOI
Tan Y.K., Panda S.K. Self-Autonomous Wireless Sensor Nodes with Wind Energy Harvesting for Remote Sensing of Wind-Driven Wildfire Spread. IEEE Trans. Instrum. Meas. 2011;60:1367–1377. doi: 10.1109/TIM.2010.2101311. DOI
Sang Y., Huang X., Liu H., Jin P. A Vibration-Based Hybrid Energy Harvester for Wireless Sensor Systems. IEEE Trans. Magn. 2012;48:4495–4498. doi: 10.1109/TMAG.2012.2201452. DOI
Qiu J., Liu X., Chen H., Xu X., Wen Y., Li P. A Low-Frequency Resonant Electromagnetic Vibration Energy Harvester Employing the Halbach Arrays for Intelligent Wireless Sensor Networks. IEEE Trans. Magn. 2015;51:1–4. doi: 10.1109/TMAG.2015.2455041. PubMed DOI
Hieu T.D., Dung L.T., Kim B.S. Stability-aware geographic routing in energy harvesting wireless sensor networks. Sensors. 2016;16:696. doi: 10.3390/s16050696. PubMed DOI PMC
Tavana M., Ozger M., Baltaci A., Schleicher B., Schupke D., Cavdar C. Wireless Power Transfer for Aircraft IoT Applications: System Design and Measurements. IEEE Internet Things J. 2021 doi: 10.1109/JIOT.2021.3072505. DOI
Nguyen B.C., Hoang T.M., Tran P.T., Nguyen T.N. Outage probability of NOMA system with wireless power transfer at source and full-duplex relay. AEU-Int. J. Electron. Commun. 2020;116:152957. doi: 10.1016/j.aeue.2019.152957. DOI
Hieu T.D., Duy T.T., Choi S.G. Performance evaluation of relay selection schemes in beacon-assisted dual-hop cognitive radio wireless sensor networks under impact of hardware noises. Sensors. 2018;18:1843. doi: 10.3390/s18061843. PubMed DOI PMC
Wang X., Liu J., Zhai C. Wireless Power Transfer-Based Multi-Pair Two-Way Relaying With Massive Antennas. IEEE Trans. Wirel. Commun. 2017;16:7672–7684. doi: 10.1109/TWC.2017.2753223. DOI
Lu W., Si P., Huang G., Han H., Qian L., Zhao N., Gong Y. SWIPT Cooperative Spectrum Sharing for 6G-Enabled Cognitive IoT Network. IEEE Internet Things J. 2020 doi: 10.1109/JIOT.2020.3026730. DOI
Wang J., Wang G., Li B., Yang H., Hu Y., Schmeink A. Massive MIMO Two-Way Relaying Systems with SWIPT in IoT Networks. IEEE Internet Things J. 2020 doi: 10.1109/JIOT.2020.3032446. DOI
Garg N., Zhang J., Ratnarajah T. Rate-Energy Balanced Precoding Design for SWIPT based Two-Way Relay Systems. IEEE J. Sel. Top. Signal Process. 2021 doi: 10.1109/JSTSP.2021.3086736. DOI
Tin P.T., Nguyen T.N., Tran M., Trang T.T., Sevcik L. Exploiting direct link in two-way half-duplex sensor network over block rayleigh fading channel: Upper bound ergodic capacity and exact SER analysis. Sensors. 2020;20:1165. doi: 10.3390/s20041165. PubMed DOI PMC
Zhang Z., Lu Y., Huang Y., Zhang P. Neural Network-Based Relay Selection in Two-Way SWIPT-Enabled Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2020;69:6264–6274. doi: 10.1109/TVT.2020.2984327. DOI
Nguyen T.N., Tran P.T., Voznak M. Wireless energy harvesting meets receiver diversity: A successful approach for two-way half-duplex relay networks over block Rayleigh fading channel. Comput. Netw. 2020;172:107176. doi: 10.1016/j.comnet.2020.107176. DOI
Dinh Tran H., Trung Tran D., Choi S.G. Secrecy performance of a generalized partial relay selection protocol in underlay cognitive networks. Int. J. Commun. Syst. 2018;31:e3806. doi: 10.1002/dac.3806. DOI
Zhang Y., Shen Y., Jiang X., Kasahara S. Secure Millimeter-Wave Ad Hoc Communications Using Physical Layer Security. IEEE Trans. Inf. Forensics Secur. 2021 doi: 10.1109/TIFS.2021.3054507. DOI
Wijewardena M., Samarasinghe T., Hemachandra K.T., Atapattu S., Evans J.S. Physical Layer Security for Intelligent Reflecting Surface Assisted Two–Way Communications. IEEE Commun. Lett. 2021 doi: 10.1109/LCOMM.2021.3068102. DOI
Hieu T.D., Duy T.T., Kim B.S. Performance Enhancement for Multihop Harvest-to-Transmit WSNs With Path-Selection Methods in Presence of Eavesdroppers and Hardware Noises. IEEE Sens. J. 2018;18:5173–5186. doi: 10.1109/JSEN.2018.2829145. DOI
Hoang An N., Tran M., Nguyen T.N., Ha D.H. Physical layer security in a hybrid TPSR two-way half-duplex relaying network over a Rayleigh fading channel: Outage and intercept probability analysis. Electronics. 2020;9:428. doi: 10.3390/electronics9030428. DOI
Tin P.T., Dinh B.H., Nguyen T.N., Ha D.H., Trang T.T. Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis. Symmetry. 2020;12:106. doi: 10.3390/sym12010106. DOI
Sun X., Yang W., Cai Y., Wang M. Secure mmWave UAV-Enabled SWIPT Networks Based on Random Frequency Diverse Arrays. IEEE Internet Things J. 2021;8:528–540. doi: 10.1109/JIOT.2020.3005984. DOI
Wang W., Tang J., Zhao N., Liu X., Zhang X.Y., Chen Y., Qian Y. Joint Precoding Optimization for Secure SWIPT in UAV-Aided NOMA Networks. IEEE Trans. Commun. 2020;68:5028–5040. doi: 10.1109/TCOMM.2020.2990994. DOI
Xu D., Zhu H. Secure Transmission for SWIPT IoT Systems With Full-Duplex IoT Devices. IEEE Internet Things J. 2019;6:10915–10933. doi: 10.1109/JIOT.2019.2943377. DOI
Deng Z., Li Q., Zhang Q., Yang L., Qin J. Beamforming Design for Physical Layer Security in a Two-Way Cognitive Radio IoT Network With SWIPT. IEEE Internet Things J. 2019;6:10786–10798. doi: 10.1109/JIOT.2019.2941873. DOI
Ha D.H., Nguyen T.N., Tran M.H.Q., Li X., Tran P.T., Voznak M. Security and Reliability Analysis of a Two-Way Half-Duplex Wireless Relaying Network Using Partial Relay Selection and Hybrid TPSR Energy Harvesting at Relay Nodes. IEEE Access. 2020;8:187165–187181. doi: 10.1109/ACCESS.2020.3030794. DOI
Tin P.T., Nguyen T.N., Tran D.H., Voznak M., Phan V.D., Chatzinotas S. Performance Enhancement for Full-Duplex Relaying with Time-Switching-Based SWIPT in Wireless Sensors Networks. Sensors. 2021;21:3847. doi: 10.3390/s21113847. PubMed DOI PMC
Nguyen T.N., Tran M., Nguyen T.L., Ha D.H., Voznak M. Performance analysis of a user selection protocol in cooperative networks with power splitting protocol-based energy harvesting over Nakagami-m/Rayleigh channels. Electronics. 2019;8:448. doi: 10.3390/electronics8040448. DOI
Wu H., Zou Y., Cao W., Chen Z., Tsiftsis T.A., Bhatnagar M.R., De Lamare R.C. Impact of Hardware Impairments on Outage Performance of Hybrid Satellite-Terrestrial Relay Systems. IEEE Access. 2019;7:35103–35112. doi: 10.1109/ACCESS.2019.2905129. DOI
Phu T.T., Phan D., Ha D.H., Nguyen T.N., Tran M., Voznak M. Nonlinear energy harvesting based power splitting relaying in full-duplex AF and DF relaying networks: System performance analysis. Proc. Est. Acad. Sci. 2020;69:368–381.
Bankey V., Upadhyay P.K. Physical Layer Security of Multiuser Multirelay Hybrid Satellite-Terrestrial Relay Networks. IEEE Trans. Veh. Technol. 2019;68:2488–2501. doi: 10.1109/TVT.2019.2893366. DOI
Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products. Academic Press; Cambridge, MA, USA: 2014.
Security and Reliability Analysis of the Power Splitting-Based Relaying in Wireless Sensors Network