A Study of Physical Layer Security in SWIPT-Based Decode-and-Forward Relay Networks with Dynamic Power Splitting

. 2021 Aug 24 ; 21 (17) : . [epub] 20210824

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34502582

In this paper, we study the physical layer security for simultaneous wireless information and power transfer (SWIPT)-based half-duplex (HD) decode-and-forward relaying system. We consider a system model including one transmitter that tries to transmit information to one receiver under the help of multiple relay users and in the presence of one eavesdropper that attempts to overhear the confidential information. More specifically, to investigate the secrecy performance, we derive closed-form expressions of outage probability (OP) and secrecy outage probability for dynamic power splitting-based relaying (DPSBR) and static power splitting-based relaying (SPSBR) schemes. Moreover, the lower bound of secrecy outage probability is obtained when the source's transmit power goes to infinity. The Monte Carlo simulations are given to corroborate the correctness of our mathematical analysis. It is observed from simulation results that the proposed DPSBR scheme outperforms the SPSBR-based schemes in terms of OP and SOP under the impact of different parameters on system performance.

Zobrazit více v PubMed

Jasiński M., Majtczak P., Malinowski A. Fuzzy logic in decision support system as a simple Human/Internet of Things interface for shunt active power filter. Bull. Pol. Acad. Sci. Tech. Sci. 2016;64:877–886. doi: 10.1515/bpasts-2016-0096. DOI

Kiciński J. Green energy transformation in Poland. Bull. Pol. Acad. Sci. Tech. Sci. 2021;69 doi: 10.24425/bpasts.2020.136213. DOI

Nguyen P.X., Tran D.H., Onireti O., Tin P.T., Nguyen S.Q., Chatzinotas S., Vincent Poor H. Backscatter-Assisted Data Offloading in OFDMA-Based Wireless-Powered Mobile Edge Computing for IoT Networks. IEEE Internet Things J. 2021;8:9233–9243. doi: 10.1109/JIOT.2021.3057360. DOI

Cong R., Zhao Z., Min G., Feng C., Jiang Y. EdgeGO: A Mobile Resource-sharing Framework for 6G Edge Computing in Massive IoT Systems. IEEE Internet Things J. 2021 doi: 10.1109/JIOT.2021.3065357. DOI

Fang X., Feng W., Wei T., Chen Y., Ge N., Wang C.X. 5G Embraces Satellites for 6G Ubiquitous IoT: Basic Models for Integrated Satellite Terrestrial Networks. IEEE Internet Things J. 2021 doi: 10.1109/JIOT.2021.3068596. DOI

Tran D.H., Nguyen V.D., Symeon C., Vu X.T., Bjorn O. UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization. arXiv. 20202008.00218

Jung H.J., Park J., Kim I.H. Investigation of Applicability of Electromagnetic Energy Harvesting System to Inclined Stay Cable Under Wind Load. IEEE Trans. Magn. 2012;48:3478–3481. doi: 10.1109/TMAG.2012.2202889. DOI

Tan Y.K., Panda S.K. Self-Autonomous Wireless Sensor Nodes with Wind Energy Harvesting for Remote Sensing of Wind-Driven Wildfire Spread. IEEE Trans. Instrum. Meas. 2011;60:1367–1377. doi: 10.1109/TIM.2010.2101311. DOI

Sang Y., Huang X., Liu H., Jin P. A Vibration-Based Hybrid Energy Harvester for Wireless Sensor Systems. IEEE Trans. Magn. 2012;48:4495–4498. doi: 10.1109/TMAG.2012.2201452. DOI

Qiu J., Liu X., Chen H., Xu X., Wen Y., Li P. A Low-Frequency Resonant Electromagnetic Vibration Energy Harvester Employing the Halbach Arrays for Intelligent Wireless Sensor Networks. IEEE Trans. Magn. 2015;51:1–4. doi: 10.1109/TMAG.2015.2455041. PubMed DOI

Hieu T.D., Dung L.T., Kim B.S. Stability-aware geographic routing in energy harvesting wireless sensor networks. Sensors. 2016;16:696. doi: 10.3390/s16050696. PubMed DOI PMC

Tavana M., Ozger M., Baltaci A., Schleicher B., Schupke D., Cavdar C. Wireless Power Transfer for Aircraft IoT Applications: System Design and Measurements. IEEE Internet Things J. 2021 doi: 10.1109/JIOT.2021.3072505. DOI

Nguyen B.C., Hoang T.M., Tran P.T., Nguyen T.N. Outage probability of NOMA system with wireless power transfer at source and full-duplex relay. AEU-Int. J. Electron. Commun. 2020;116:152957. doi: 10.1016/j.aeue.2019.152957. DOI

Hieu T.D., Duy T.T., Choi S.G. Performance evaluation of relay selection schemes in beacon-assisted dual-hop cognitive radio wireless sensor networks under impact of hardware noises. Sensors. 2018;18:1843. doi: 10.3390/s18061843. PubMed DOI PMC

Wang X., Liu J., Zhai C. Wireless Power Transfer-Based Multi-Pair Two-Way Relaying With Massive Antennas. IEEE Trans. Wirel. Commun. 2017;16:7672–7684. doi: 10.1109/TWC.2017.2753223. DOI

Lu W., Si P., Huang G., Han H., Qian L., Zhao N., Gong Y. SWIPT Cooperative Spectrum Sharing for 6G-Enabled Cognitive IoT Network. IEEE Internet Things J. 2020 doi: 10.1109/JIOT.2020.3026730. DOI

Wang J., Wang G., Li B., Yang H., Hu Y., Schmeink A. Massive MIMO Two-Way Relaying Systems with SWIPT in IoT Networks. IEEE Internet Things J. 2020 doi: 10.1109/JIOT.2020.3032446. DOI

Garg N., Zhang J., Ratnarajah T. Rate-Energy Balanced Precoding Design for SWIPT based Two-Way Relay Systems. IEEE J. Sel. Top. Signal Process. 2021 doi: 10.1109/JSTSP.2021.3086736. DOI

Tin P.T., Nguyen T.N., Tran M., Trang T.T., Sevcik L. Exploiting direct link in two-way half-duplex sensor network over block rayleigh fading channel: Upper bound ergodic capacity and exact SER analysis. Sensors. 2020;20:1165. doi: 10.3390/s20041165. PubMed DOI PMC

Zhang Z., Lu Y., Huang Y., Zhang P. Neural Network-Based Relay Selection in Two-Way SWIPT-Enabled Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2020;69:6264–6274. doi: 10.1109/TVT.2020.2984327. DOI

Nguyen T.N., Tran P.T., Voznak M. Wireless energy harvesting meets receiver diversity: A successful approach for two-way half-duplex relay networks over block Rayleigh fading channel. Comput. Netw. 2020;172:107176. doi: 10.1016/j.comnet.2020.107176. DOI

Dinh Tran H., Trung Tran D., Choi S.G. Secrecy performance of a generalized partial relay selection protocol in underlay cognitive networks. Int. J. Commun. Syst. 2018;31:e3806. doi: 10.1002/dac.3806. DOI

Zhang Y., Shen Y., Jiang X., Kasahara S. Secure Millimeter-Wave Ad Hoc Communications Using Physical Layer Security. IEEE Trans. Inf. Forensics Secur. 2021 doi: 10.1109/TIFS.2021.3054507. DOI

Wijewardena M., Samarasinghe T., Hemachandra K.T., Atapattu S., Evans J.S. Physical Layer Security for Intelligent Reflecting Surface Assisted Two–Way Communications. IEEE Commun. Lett. 2021 doi: 10.1109/LCOMM.2021.3068102. DOI

Hieu T.D., Duy T.T., Kim B.S. Performance Enhancement for Multihop Harvest-to-Transmit WSNs With Path-Selection Methods in Presence of Eavesdroppers and Hardware Noises. IEEE Sens. J. 2018;18:5173–5186. doi: 10.1109/JSEN.2018.2829145. DOI

Hoang An N., Tran M., Nguyen T.N., Ha D.H. Physical layer security in a hybrid TPSR two-way half-duplex relaying network over a Rayleigh fading channel: Outage and intercept probability analysis. Electronics. 2020;9:428. doi: 10.3390/electronics9030428. DOI

Tin P.T., Dinh B.H., Nguyen T.N., Ha D.H., Trang T.T. Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis. Symmetry. 2020;12:106. doi: 10.3390/sym12010106. DOI

Sun X., Yang W., Cai Y., Wang M. Secure mmWave UAV-Enabled SWIPT Networks Based on Random Frequency Diverse Arrays. IEEE Internet Things J. 2021;8:528–540. doi: 10.1109/JIOT.2020.3005984. DOI

Wang W., Tang J., Zhao N., Liu X., Zhang X.Y., Chen Y., Qian Y. Joint Precoding Optimization for Secure SWIPT in UAV-Aided NOMA Networks. IEEE Trans. Commun. 2020;68:5028–5040. doi: 10.1109/TCOMM.2020.2990994. DOI

Xu D., Zhu H. Secure Transmission for SWIPT IoT Systems With Full-Duplex IoT Devices. IEEE Internet Things J. 2019;6:10915–10933. doi: 10.1109/JIOT.2019.2943377. DOI

Deng Z., Li Q., Zhang Q., Yang L., Qin J. Beamforming Design for Physical Layer Security in a Two-Way Cognitive Radio IoT Network With SWIPT. IEEE Internet Things J. 2019;6:10786–10798. doi: 10.1109/JIOT.2019.2941873. DOI

Ha D.H., Nguyen T.N., Tran M.H.Q., Li X., Tran P.T., Voznak M. Security and Reliability Analysis of a Two-Way Half-Duplex Wireless Relaying Network Using Partial Relay Selection and Hybrid TPSR Energy Harvesting at Relay Nodes. IEEE Access. 2020;8:187165–187181. doi: 10.1109/ACCESS.2020.3030794. DOI

Tin P.T., Nguyen T.N., Tran D.H., Voznak M., Phan V.D., Chatzinotas S. Performance Enhancement for Full-Duplex Relaying with Time-Switching-Based SWIPT in Wireless Sensors Networks. Sensors. 2021;21:3847. doi: 10.3390/s21113847. PubMed DOI PMC

Nguyen T.N., Tran M., Nguyen T.L., Ha D.H., Voznak M. Performance analysis of a user selection protocol in cooperative networks with power splitting protocol-based energy harvesting over Nakagami-m/Rayleigh channels. Electronics. 2019;8:448. doi: 10.3390/electronics8040448. DOI

Wu H., Zou Y., Cao W., Chen Z., Tsiftsis T.A., Bhatnagar M.R., De Lamare R.C. Impact of Hardware Impairments on Outage Performance of Hybrid Satellite-Terrestrial Relay Systems. IEEE Access. 2019;7:35103–35112. doi: 10.1109/ACCESS.2019.2905129. DOI

Phu T.T., Phan D., Ha D.H., Nguyen T.N., Tran M., Voznak M. Nonlinear energy harvesting based power splitting relaying in full-duplex AF and DF relaying networks: System performance analysis. Proc. Est. Acad. Sci. 2020;69:368–381.

Bankey V., Upadhyay P.K. Physical Layer Security of Multiuser Multirelay Hybrid Satellite-Terrestrial Relay Networks. IEEE Trans. Veh. Technol. 2019;68:2488–2501. doi: 10.1109/TVT.2019.2893366. DOI

Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products. Academic Press; Cambridge, MA, USA: 2014.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Security and Reliability Analysis of the Power Splitting-Based Relaying in Wireless Sensors Network

. 2024 Feb 17 ; 24 (4) : . [epub] 20240217

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...