Performance Enhancement for Full-Duplex Relaying with Time-Switching-Based SWIPT in Wireless Sensors Networks
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34199489
PubMed Central
PMC8199645
DOI
10.3390/s21113847
PII: s21113847
Knihovny.cz E-zdroje
- Klíčová slova
- SWIPT, decode-and-forward (DF), energy harvesting, full-duplex, outage probability, time-switching relaying (TSR),
- Publikační typ
- časopisecké články MeSH
Full-duplex (FD) with simultaneous wireless information and power transfer (SWIPT) in wireless ad hoc networks has received increased attention as a technology for improving spectrum and energy efficiency. This paper studies the outage performance for a SWIPT-based decode-and-forward (DF) FD relaying network consisting of a single-antenna source S, a two-antenna relay R, and a multi-antenna destination D. Specifically, we propose four protocols, namely static time-switching factor with selection combining (STSF-SC), static time-switching factor with maximal ratio combining (STSF-MRC), optimal dynamic time-switching factor with selection combining (ODTSF-SC), and optimal dynamic time-switching factor with maximal ratio combining (ODTSF-MRC) to fully investigate the outage performance of the proposed system. In particular, the optimal time-switching factor from the ODTSF-SC and ODTSF-MRC methods is designed to maximize the total received data at the destination. In this context, we derive exact closed-formed expressions for all schemes in terms of the outage probability (OP). Finally, the Monte Carlo simulations are conducted to corroborate the theoretical analysis's correctness and the proposed schemes' effectiveness.
Zobrazit více v PubMed
Baniata M., Reda H.T., Chilamkurti N., Abuadbba A. Energy-Efficient Hybrid Routing Protocol for IoT Communication Systems in 5G and Beyond. Sensors. 2021;21:537. doi: 10.3390/s21020537. PubMed DOI PMC
Nguyen P.X., Tran D.H., Onireti O., Tin P.T., Nguyen S.Q., Chatzinotas S., Poor H.V. Backscatter-Assisted Data Offloading in OFDMA-based Wireless Powered Mobile Edge Computing for IoT Networks. IEEE Internet Things J. 2021:9233–9243. doi: 10.1109/JIOT.2021.3057360. DOI
Nguyen A.N., Vo V.N., So-In C., Ha D.B. System Performance Analysis for an Energy Harvesting IoT System Using a DF/AF UAV-Enabled Relay with Downlink NOMA under Nakagami-m Fading. Sensors. 2021;21:285. doi: 10.3390/s21010285. PubMed DOI PMC
Tran D.H., Nguyen V.D., Symeon C., Vu X.T., Bjorn O. UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization. arXiv. 20202008.00218
Holst A. Number of IoT Connected Devices Worldwide 2019–2030. [(accessed on 1 June 2021)];2021 Available online: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
Ponnusamy V., Jung L.T., Ramachandran T., Zaman N. Bio-inspired energy scavenging in wireless ad hoc network; Proceedings of the 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT); Karachi, Pakistan. 5–7 April 2017; pp. 1–5. DOI
Vacca J.R. Computer and Information Security Handbook. Elsevier Science; Amsterdam, The Netherlands: 2012. Chapter 11.
Hieu T.D., Dung L.T., Kim B.S. Stability-aware geographic routing in energy harvesting wireless sensor networks. Sensors. 2016;16:696. doi: 10.3390/s16050696. PubMed DOI PMC
Bi S., Ho C.K., Zhang R. Wireless powered communication: Opportunities and challenges. IEEE Commun. Mag. 2015;53:117–125. doi: 10.1109/MCOM.2015.7081084. DOI
Niyato D., Kim D.I., Maso M., Han Z. Wireless powered communication networks: Research directions and technological approaches. IEEE Wirel. Commun. 2017;24:88–97. doi: 10.1109/MWC.2017.1600116. DOI
Nguyen T.N., Tran M., Nguyen T.L., Ha D.H., Voznak M. Multisource power splitting energy harvesting relaying network in half-duplex system over block Rayleigh fading channel: System performance analysis. Electronics. 2019;8:67. doi: 10.3390/electronics8010067. DOI
Lee S., Zhang R., Huang K. Opportunistic Wireless Energy Harvesting in Cognitive Radio Networks. IEEE Trans. Wirel. Commun. 2013;12:4788–4799. doi: 10.1109/TWC.2013.072613.130323. DOI
Maso M., Liu C., Lee C., Quek T.Q.S., Cardoso L.S. Energy-recycling full-duplex radios for next-generation networks. IEEE J. Sel. Areas Commun. 2015;33:2948–2962. doi: 10.1109/JSAC.2015.2482058. DOI
Nguyen T.N., Minh T.H.Q., Tran P.T., Voznak M., Duy T.T., Nguyen T.L., Tin P.T. Performance enhancement for energy harvesting based two-way relay protocols in wireless ad-hoc networks with partial and full relay selection methods. Ad Netw. 2019;84:178–187. doi: 10.1016/j.adhoc.2018.10.005. DOI
Hieu T.D., Duy T.T., Kim B. Performance Enhancement for Multihop Harvest-to-Transmit WSNs With Path-Selection Methods in Presence of Eavesdroppers and Hardware Noises. IEEE Sens. J. 2018;18:5173–5186. doi: 10.1109/JSEN.2018.2829145. DOI
Kellogg B., Parks A., Gollakota S., Smith J.R., Wetherall D. Wi-Fi backscatter: Internet connectivity for RF-powered devices; Proceedings of the 2014 ACM Conference on SIGCOMM; Chicago, IL, USA. 17–22 August 2014; pp. 607–618.
Tran Dinh H., Duy T.T., Choi S.G. Performance enhancement for harvest-to-transmit cognitive multi-hop networks with best path selection method under presence of eavesdropper; Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT); Chuncheon, Korea. 11–14 February 2018; pp. 323–328.
Varshney L.R. Transporting information and energy simultaneously; Proceedings of the 2008 IEEE International Symposium on Information Theory; Toronto, ON, Canada. 6–11 July 2008; pp. 1612–1616. DOI
Grover P., Sahai A. Shannon meets Tesla: Wireless information and power transfer; Proceedings of the 2010 IEEE International Symposium on Information Theory; Austin, TX, USA. 13–18 June 2010; pp. 2363–2367. DOI
Zhang R., Ho C.K. MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer. IEEE Trans. Wirel. Commun. 2013;12:1989–2001. doi: 10.1109/TWC.2013.031813.120224. DOI
Ha D.H., Nguyen T.N., Tran M.H.Q., Li X., Tran P.T., Voznak M. Security and Reliability Analysis of a Two-Way Half-Duplex Wireless Relaying Network Using Partial Relay Selection and Hybrid TPSR Energy Harvesting at Relay Nodes. IEEE Access. 2020;8:187165–187181. doi: 10.1109/ACCESS.2020.3030794. DOI
Nguyen T.N., Tran P.T., Minh T.H.Q., Vozňák M., Ševčík L. Two-way half duplex decode and forward relaying network with hardware impairment over Rician fading channel: System performance analysis. Elektron. Elektrotech. 2018;24:74–78. doi: 10.5755/j01.eie.24.2.20639. DOI
Yuan T., Liu M., Feng Y. Performance Analysis for SWIPT Cooperative DF Communication Systems with Hybrid Receiver and Non-Linear Energy Harvesting Model. Sensors. 2020;20:2472. doi: 10.3390/s20092472. PubMed DOI PMC
Nguyen T.N., Tran P.T., Voznak M. Wireless energy harvesting meets receiver diversity: A successful approach for two-way half-duplex relay networks over block Rayleigh fading channel. Comput. Netw. 2020;172:107176. doi: 10.1016/j.comnet.2020.107176. DOI
Zhou X., Guo J., Durrani S., Krikidis I. Performance of Maximum Ratio Transmission in Ad Hoc Networks With SWIPT. IEEE Wirel. Commun. Lett. 2015;4:529–532. doi: 10.1109/LWC.2015.2452922. DOI
Psomas C., Krikidis I. Successive Interference Cancellation in Bipolar Ad Hoc Networks with SWIPT. IEEE Wirel. Commun. Lett. 2016;5:364–367. doi: 10.1109/LWC.2016.2559484. DOI
Park J., Clerckx B., Song C., Wu Y. An Analysis of the Optimum Node Density for Simultaneous Wireless Information and Power Transfer in Ad Hoc Networks. IEEE Trans. Veh. Technol. 2018;67:2713–2726. doi: 10.1109/TVT.2017.2773270. DOI
Sharma S.K., Bogale T.E., Le L.B., Chatzinotas S., Wang X., Ottersten B. Dynamic Spectrum Sharing in 5G Wireless Networks With Full-Duplex Technology: Recent Advances and Research Challenges. IEEE Commun. Surv. Tutor. 2018;20:674–707. doi: 10.1109/COMST.2017.2773628. DOI
Huang H., Hu S., Yang T., Yuan C.W. Full Duplex Non-orthogonal Multiple Access with Layers-based Optimized Mobile Relays Subsets Algorithm in B5G/6G Ubiquitous Networks. IEEE Internet Things J. 2020 doi: 10.1109/JIOT.2020.3033553. DOI
Nguyen B.C., Hoang T.M., Tran P.T., Nguyen T.N. Outage probability of NOMA system with wireless power transfer at source and full-duplex relay. AEU Int. J. Electron. Commun. 2020;116:152957. doi: 10.1016/j.aeue.2019.152957. DOI
Ye H., Kang X., Joung J., Liang Y. Optimization for Full-Duplex Rotary-Wing UAV-Enabled Wireless-Powered IoT Networks. IEEE Trans. Wirel. Commun. 2020;19:5057–5072. doi: 10.1109/TWC.2020.2989302. DOI
Zhu L., Zhang J., Xiao Z., Cao X., Xia X.G., Schober R. Millimeter-Wave Full-Duplex UAV Relay: Joint Positioning, Beamforming, and Power Control. IEEE J. Sel. Areas Commun. 2020;38:2057–2073. doi: 10.1109/JSAC.2020.3000879. DOI
Nguyen T.N., Tran M., Nguyen T.L., Voznak M. Adaptive relaying protocol for decode and forward full-duplex system over Rician fading channel: System performance analysis. China Commun. 2019;16:92–102. doi: 10.12676/j.cc.2019.03.009. DOI
Ding Q., Lian Y., Jing Y. Performance Analysis of Full-Duplex Massive MIMO Systems with Low-Resolution ADCs/DACs Over Rician Fading Channels. IEEE Trans. Veh. Technol. 2020;69:7389–7403. doi: 10.1109/TVT.2020.2991143. DOI
Nguyen B.C., Tran X.N., Hoang T.M. Performance analysis of full-duplex vehicle-to-vehicle relay system over double-rayleigh fading channels. Mob. Netw. Appl. 2020;25:363–372. doi: 10.1007/s11036-019-01291-x. DOI
Nguyen B.C., Hoang T.M. Performance analysis of vehicle-to-vehicle communication with full-duplex amplify-and-forward relay over double-Rayleigh fading channels. Veh. Commun. 2019;19:100166. doi: 10.1016/j.vehcom.2019.100166. DOI
Nguyen B.C., Thang N.N., Hoang T.M. Analysis of outage probability and throughput for energy harvesting full-duplex decode-and-forward vehicle-to-vehicle relay system. Wirel. Commun. Mob. Comput. 2020;2020:3539450. doi: 10.1155/2020/3539450. DOI
Su Y., Jiang L., He C. Decode-and-forward relaying with full-duplex wireless information and power transfer. IET Commun. 2017;11:2110–2115. doi: 10.1049/iet-com.2016.1371. DOI
Duy T.T., Duong T.Q., Thanh T.L., Bao V.N.Q. Secrecy performance analysis with relay selection methods under impact of co-channel interference. IET Commun. 2015;9:1427–1435. doi: 10.1049/iet-com.2014.1128. DOI
Nguyen T.N., Tran P.T., Vozňák M. Power splitting-based energy-harvesting protocol for wireless-powered communication networks with a bidirectional relay. Int. J. Commun. Syst. 2018;31:e3721. doi: 10.1002/dac.3721. DOI
Jeffrey A., Zwillinger D. Table of Integrals, Series, and Products. 7th ed. Elsevier; Amsterdam, The Netherlands: 2007.
Ashraf M., Jang J., Han J., Lee K.G. Capacity Maximizing Adaptive Power Splitting Protocol for Cooperative Energy Harvesting Communication Systems. IEEE Commun. Lett. 2018;22:902–905. doi: 10.1109/LCOMM.2018.2808960. DOI
Dinh Tran H., Trung Tran D., Choi S.G. Secrecy performance of a generalized partial relay selection protocol in underlay cognitive networks. Int. J. Commun. Syst. 2018;31:e3806. doi: 10.1002/dac.3806. DOI
Tran Tin P., Nguyen T.N., Duy T.T., Voznak M. Secrecy performance enhancement for underlay cognitive radio networks employing cooperative multi-hop transmission with and without presence of hardware impairments. Entropy. 2019;21:217. doi: 10.3390/e21020217. PubMed DOI PMC
Security and Reliability Analysis of the Power Splitting-Based Relaying in Wireless Sensors Network
Outage Analysis of the Power Splitting Based Underlay Cooperative Cognitive Radio Networks