Synthesis of a Helical Phosphine and a Catalytic Study of Its Palladium Complex
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
31956841
PubMed Central
PMC6964522
DOI
10.1021/acsomega.9b03830
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
In this study, 9-(diphenylphosphanyl)[7]helicene was prepared as a suitable ligand for the subsequent synthesis of palladium complexes. The corresponding PdL2Cl2 complex was then successfully obtained in both racemic and enantiopure forms. The PdL2Cl2 complex emerges exclusively in the trans arrangement showing dynamic interconversion between its homo- and heterochiral forms as evidenced by 31P NMR. The trans arrangement was ultimately confirmed by X-ray crystallography using single crystals of the homochiral complex. Additionally, the PdL2Cl2 complex was subjected to screening of its catalytic activity in a Suzuki-type reaction of aryl bromides with aryl boronic acids showing fair yields of the resulting biaryls. However, the final asymmetric reactions catalyzed by the optically pure PdL2Cl2 complex provided targeted binaphtyls only in negligible enantiomeric excess.
See more in PubMed
Gingras M. One Hundred Years of Helicene Chemistry. Part 1: Non-Stereoselective Syntheses of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 968–1006. 10.1039/C2CS35154D. PubMed DOI
Shen Y.; Chen C.-F. Helicenes: Synthesis and Applications. Chem. Rev. 2012, 112, 1463–1535. 10.1021/cr200087r. PubMed DOI
Martin R. H. The Helicenes. Angew. Chem., Int. Ed. 1974, 13, 649–660. 10.1002/anie.197406491. DOI
Wynberg H. Some Observations on the Chemical, Photochemical, and Spectral Properties of Thiophenes. Acc. Chem. Res. 1971, 4, 65–73. 10.1021/ar50038a004. DOI
Katz T. J. Syntheses of Functionalized and Aggregating Helical Conjugated Molecules. Angew. Chem., Int. Ed. 2000, 39, 1921–1923. 10.1002/1521-3773(20000602)39:11<1921::AID-ANIE1921>3.0.CO;2-F. PubMed DOI
Urbano A. Recent Developments in the Synthesis of Helicene-like Molecules. Angew. Chem., Int. Ed. 2003, 42, 3986–3989. 10.1002/anie.200301667. PubMed DOI
Grimme S.; Harren J.; Sobanski A.; Vögtle F. Structure/Chiroptics Relationships of Planar Chiral and Helical Molecules. Eur. J. Org. Chem. 1998, 1998, 1491–1509. 10.1002/(SICI)1099-0690(199808)1998:8<1491::AID-EJOC1491>3.0.CO;2-6. DOI
Hoffmann N. Photochemical Reactions as Key Steps in Organic Synthesis. Chem. Rev. 2008, 108, 1052–1103. 10.1021/cr0680336. PubMed DOI
Dumitrascu F.; Dumitrescu D. G.; Aronb I. Azahelicenes and Other Similar Tri and Tetracyclic Helical Molecules. ARKIVOC 2009, 2010, 1–32. 10.3998/ark.5550190.0011.101. DOI
Collins S. K.; Vachon M. P. Unlocking the Potential of Thiaheterohelicenes: Chemical Synthesis as the Key. Org. Biomol. Chem. 2006, 4, 2518–2524. 10.1039/b603305a. PubMed DOI
Gingras M. One Hundred Years of Helicene Chemistry. Part 3: Applications and Properties of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 1051–1095. 10.1039/C2CS35134J. PubMed DOI
Aillard P.; Voituriez A.; Marinetti A. Helicene-like Chiral Auxiliaries in Asymmetric Catalysis. Dalton Trans. 2014, 43, 15263–15278. 10.1039/C4DT01935K. PubMed DOI
Ben Hassine B.; Gorsane M.; Pecher J.; Martin R. H. Diastereoselective NaBH4 Reductions of (Dl) α-Keto Esters. Bull. Soc. Chim. Belg. 1985, 94, 597–603. 10.1002/bscb.19850940808. DOI
Ben Hassine B.; Gorsane M.; Pecher J.; Martin R. H. Synthèses Asymétriques Potentielles Impliquant La Réaction “Ene.”. Bull. Soc. Chim. Belg. 1987, 96, 801–808. 10.1002/bscb.19870961013. DOI
Takenaka N.; Chen J.; Captain B.; Sarangthem R. S.; Chandrakumar A. Helical Chiral 2-Aminopyridinium Ions: A New Class of Hydrogen Bond Donor Catalysts. J. Am. Chem. Soc. 2010, 132, 4536–4537. 10.1021/ja100539c. PubMed DOI
Chen J.; Takenaka N. Helical Chiral Pyridine N-Oxides: A New Family of Asymmetric Catalysts. Chem. – Eur. J. 2009, 15, 7268–7276. 10.1002/chem.200900607. PubMed DOI
Šámal M.; Míšek J.; Stará I. G.; Starý I. Organocatalysis with Azahelicenes: The First Use of Helically Chiral Pyridine-Based Catalysts in the Asymmetric Acyl Transfer Reaction. Collect. Czech. Chem. Commun. 2009, 74, 1151–1159. 10.1135/cccc2009067. DOI
Cauteruccio S.; Dova D.; Benaglia M.; Genoni A.; Orlandi M.; Licandro E. Synthesis, Characterisation, and Organocatalytic Activity of Chiral Tetrathiahelicene Diphosphine Oxides. Eur. J. Org. Chem. 2014, 2014, 2694–2702. 10.1002/ejoc.201301912. DOI
Aloui F.; El Abed R.; Marinetti A.; Ben Hassine B. Synthesis and Characterization of New Hexahelicene Derivatives. Tetrahedron Lett. 2007, 48, 2017–2020. 10.1016/j.tetlet.2007.01.058. DOI
Teplý F.; Stará I. G.; Starý I.; Kollárovič A.; Šaman D.; Vyskočil Š.; Fiedler P. Synthesis of 3-Hexahelicenol and Its Transformation to 3-Hexahelicenylamines, Diphenylphosphine, Methyl Carboxylate, and Dimethylthiocarbamate. J. Org. Chem. 2003, 68, 5193–5197. 10.1021/jo034369t. PubMed DOI
Sato I.; Yamashima R.; Kadowaki K.; Yamamoto J.; Shibata T.; Soai K. Asymmetric Induction by Helical Hydrocarbons: [6]- and [5]Helicenes. Angew. Chem., Int. Ed. 2001, 40, 1096–1098. 10.1002/1521-3773(20010316)40:6<1096::AID-ANIE10960>3.0.CO;2-K. PubMed DOI
Gingras M.; Félix G.; Peresutti R. One Hundred Years of Helicene Chemistry. Part 2: Stereoselective Syntheses and Chiral Separations of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 1007–1050. 10.1039/C2CS35111K. PubMed DOI
Šámal M.; Chercheja S.; Rybáček J.; Vacek Chocholoušová J.; Vacek J.; Bednárová L.; Šaman D.; Stará I. G.; Starý I. An Ultimate Stereocontrol in Asymmetric Synthesis of Optically Pure Fully Aromatic Helicenes. J. Am. Chem. Soc. 2015, 137, 8469–8474. 10.1021/jacs.5b02794. PubMed DOI
Reetz M. T.; Beuttenmüller E. W.; Goddard R. First Enantioselective Catalysis Using a Helical Diphosphane. Tetrahedron Lett. 1997, 38, 3211–3214. 10.1016/S0040-4039(97)00562-5. DOI
Reetz M. T.; Sostmann S. Kinetic Resolution in Pd-Catalyzed Allylic Substitution Using the Helical PHelix Ligand. J. Organomet. Chem. 2000, 603, 105–109. 10.1016/S0022-328X(00)00173-X. DOI
Yamamoto K.; Shimizu T.; Igawa K.; Tomooka K.; Hirai G.; Suemune H.; Usui K. Rational Design and Synthesis of [5]Helicene-Derived Phosphine Ligands and Their Application in Pd-Catalyzed Asymmetric Reactions. Sci. Rep. 2016, 6, 36211.10.1038/srep36211. PubMed DOI PMC
Sanogo Y.; Aillard P.; Retailleau P.; Voituriez A.; Marinetti A. Synthesis and X-Ray Diffraction Study of a Chiral Bis-Phosphahelicene Palladium (II) Complex. Chirality 2019, 31, 561–567. 10.1002/chir.23100. PubMed DOI
Fukawa N.; Osaka T.; Noguchi K.; Tanaka K. Asymmetric Synthesis and Photophysical Properties of Benzopyrano- or Naphthopyrano-Fused Helical Phosphafluorenes. Org. Lett. 2010, 12, 1324–1327. 10.1021/ol100227k. PubMed DOI
Yavari K.; Moussa S.; Ben Hassine B.; Retailleau P.; Voituriez A.; Marinetti A. 1H-Phosphindoles as Structural Units in the Synthesis of Chiral Helicenes. Angew. Chem., Int. Ed. 2012, 51, 6748–6752. 10.1002/anie.201202024. PubMed DOI
Yavari K.; Aillard P.; Zhang Y.; Nuter F.; Retailleau P.; Voituriez A.; Marinetti A. Helicenes with Embedded Phosphole Units in Enantioselective Gold Catalysis. Angew. Chem., Int. Ed. 2014, 53, 861–865. 10.1002/anie.201308377. PubMed DOI
Nakano K.; Oyama H.; Nishimura Y.; Nakasako S.; Nozaki K. λ5-Phospha[7]Helicenes: Synthesis, Properties, and Columnar Aggregation with One-Way Chirality. Angew. Chem., Int. Ed. 2012, 51, 695–699. 10.1002/anie.201106157. PubMed DOI
Yavari K.; Delaunay W.; de Rycke N.; Reynaldo T.; Aillard P.; Srebro-Hooper M.; Chang V. Y.; Muller G.; Tondelier D.; Geffroy B.; Voituriez A.; Marinetti A.; Hissler M.; Crassous J. Phosphahelicenes: From Chiroptical and Photophysical Properties to OLED Applications. Chem. – Eur. J. 2019, 25, 5303–5310. 10.1002/chem.201806140. PubMed DOI PMC
Krausová Z.; Sehnal P.; Bondzic B. P.; Chercheja S.; Eilbracht P.; Stará I. G.; Šaman D.; Starý I. Helicene-Based Phosphite Ligands in Asymmetric Transition-Metal Catalysis: Exploring Rh-Catalyzed Hydroformylation and Ir-Catalyzed Allylic Amination. Eur. J. Org. Chem. 2011, 2011, 3849–3857. 10.1002/ejoc.201100259. DOI
Žádný J.; Velíšek P.; Jakubec M.; Sýkora J.; Církva V.; Storch J. Exploration of 9-Bromo[7]Helicene Reactivity. Tetrahedron 2013, 69, 6213–6218. 10.1016/j.tet.2013.05.039. DOI
El Abed R.; Aloui F.; Genêt J.-P.; Ben Hassine B.; Marinetti A. Synthesis and Resolution of 2-(Diphenylphosphino)Heptahelicene. J. Organomet. Chem. 2007, 692, 1156–1160. 10.1016/j.jorganchem.2006.11.022. DOI
Terfort A.; Görls H.; Brunner H. The First Helical-Chiral Phosphane Ligands: Rac-[5]- and Rac-[6]-Heliphos. Synthesis 1997, 1997, 79–86. 10.1055/s-1997-1498. DOI
Stadler A.; Kappe C. O. Rapid Formation of Triarylphosphines by Microwave-Assisted Transition Metal-Catalyzed C-P Cross-Coupling Reactions. Org. Lett. 2002, 4, 3541–3543. 10.1021/ol026716b. PubMed DOI
Sudhakar A.; Katz T. J. Directive Effect of Bromine on Stilbene Photocyclizations. an Improved Synthesis of [7]Helicene. Tetrahedron Lett. 1986, 27, 2231–2234. 10.1016/S0040-4039(00)84494-9. DOI
Lloyd-Jones G. C.; Taylor N. P. Mechanism of Phosphine Borane Deprotection with Amines: The Effects of Phosphine, Solvent and Amine on Rate and Efficiency. Chem. – Eur. J. 2015, 21, 5423–5428. 10.1002/chem.201406585. PubMed DOI
Netherton M. R.; Fu G. C. Air-Stable Trialkylphosphonium Salts: Simple, Practical, and Versatile Replacements for Air-Sensitive Trialkylphosphines. Applications in Stoichiometric and Catalytic Processes. Org. Lett. 2001, 3, 4295–4298. 10.1021/ol016971g. PubMed DOI
McKinstry L.; Livinghouse T. An Efficient Procedure for the Synthesis of C-Chiral Bisphosphines. Tetrahedron 1995, 51, 7655–7666. 10.1016/0040-4020(95)00390-T. DOI
Denmark S. E.; Chang W.-T. T.; Houk K. N.; Liu P. Development of Chiral Bis-Hydrazone Ligands for the Enantioselective Cross-Coupling Reactions of Aryldimethylsilanolates. J. Org. Chem. 2015, 80, 313–366. 10.1021/jo502388r. PubMed DOI PMC
Böhm V. P. W.; Herrmann W. A. Mechanism of the Heck Reaction Using a Phosphapalladacycle as the Catalyst: Classical versus Palladium(IV) Intermediates. Chem. – Eur. J. 2001, 7, 4191–4197. 10.1002/1521-3765(20011001)7:19<4191::AID-CHEM4191>3.0.CO;2-1. PubMed DOI
Vieille-Petit L.; Luan X.; Mariz R.; Blumentritt S.; Linden A.; Dorta R. A New Class of Stable, Saturated N-Heterocyclic Carbenes with N-Naphthyl Substituents: Synthesis, Dynamic Behavior, and Catalytic Potential. Eur. J. Inorg. Chem. 2009, 1861–1870. 10.1002/ejic.200900010. DOI
Labre F.; Gimbert Y.; Bannwarth P.; Olivero S.; Duñach E.; Chavant P. Y. Application of Cooperative Iron/Copper Catalysis to a Palladium-Free Borylation of Aryl Bromides with Pinacolborane. Org. Lett. 2014, 16, 2366–2369. 10.1021/ol500675q. PubMed DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr.; Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., G.A. Petersson H. N. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2004.
Becke A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785.10.1103/PhysRevB.37.785. PubMed DOI
Sheldrick G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC
Fujino S.; Yamaji M.; Okamoto H.; Mutai T.; Yoshikawa I.; Houjou H.; Tani F. Systematic Investigations on Fused π-System Compounds of Seven Benzene Rings Prepared by Photocyclization of Diphenanthrylethenes. Photochem. Photobiol. Sci. 2017, 16, 925–934. 10.1039/C7PP00040E. PubMed DOI
Farrugia L. J. ORTEP-3 for Windows - A Version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565.10.1107/S0021889897003117. DOI