• This record comes from PubMed

Synthesis of a Helical Phosphine and a Catalytic Study of Its Palladium Complex

. 2020 Jan 14 ; 5 (1) : 882-892. [epub] 20200102

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

In this study, 9-(diphenylphosphanyl)[7]helicene was prepared as a suitable ligand for the subsequent synthesis of palladium complexes. The corresponding PdL2Cl2 complex was then successfully obtained in both racemic and enantiopure forms. The PdL2Cl2 complex emerges exclusively in the trans arrangement showing dynamic interconversion between its homo- and heterochiral forms as evidenced by 31P NMR. The trans arrangement was ultimately confirmed by X-ray crystallography using single crystals of the homochiral complex. Additionally, the PdL2Cl2 complex was subjected to screening of its catalytic activity in a Suzuki-type reaction of aryl bromides with aryl boronic acids showing fair yields of the resulting biaryls. However, the final asymmetric reactions catalyzed by the optically pure PdL2Cl2 complex provided targeted binaphtyls only in negligible enantiomeric excess.

See more in PubMed

Gingras M. One Hundred Years of Helicene Chemistry. Part 1: Non-Stereoselective Syntheses of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 968–1006. 10.1039/C2CS35154D. PubMed DOI

Shen Y.; Chen C.-F. Helicenes: Synthesis and Applications. Chem. Rev. 2012, 112, 1463–1535. 10.1021/cr200087r. PubMed DOI

Martin R. H. The Helicenes. Angew. Chem., Int. Ed. 1974, 13, 649–660. 10.1002/anie.197406491. DOI

Wynberg H. Some Observations on the Chemical, Photochemical, and Spectral Properties of Thiophenes. Acc. Chem. Res. 1971, 4, 65–73. 10.1021/ar50038a004. DOI

Katz T. J. Syntheses of Functionalized and Aggregating Helical Conjugated Molecules. Angew. Chem., Int. Ed. 2000, 39, 1921–1923. 10.1002/1521-3773(20000602)39:11<1921::AID-ANIE1921>3.0.CO;2-F. PubMed DOI

Urbano A. Recent Developments in the Synthesis of Helicene-like Molecules. Angew. Chem., Int. Ed. 2003, 42, 3986–3989. 10.1002/anie.200301667. PubMed DOI

Grimme S.; Harren J.; Sobanski A.; Vögtle F. Structure/Chiroptics Relationships of Planar Chiral and Helical Molecules. Eur. J. Org. Chem. 1998, 1998, 1491–1509. 10.1002/(SICI)1099-0690(199808)1998:8<1491::AID-EJOC1491>3.0.CO;2-6. DOI

Hoffmann N. Photochemical Reactions as Key Steps in Organic Synthesis. Chem. Rev. 2008, 108, 1052–1103. 10.1021/cr0680336. PubMed DOI

Dumitrascu F.; Dumitrescu D. G.; Aronb I. Azahelicenes and Other Similar Tri and Tetracyclic Helical Molecules. ARKIVOC 2009, 2010, 1–32. 10.3998/ark.5550190.0011.101. DOI

Collins S. K.; Vachon M. P. Unlocking the Potential of Thiaheterohelicenes: Chemical Synthesis as the Key. Org. Biomol. Chem. 2006, 4, 2518–2524. 10.1039/b603305a. PubMed DOI

Gingras M. One Hundred Years of Helicene Chemistry. Part 3: Applications and Properties of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 1051–1095. 10.1039/C2CS35134J. PubMed DOI

Aillard P.; Voituriez A.; Marinetti A. Helicene-like Chiral Auxiliaries in Asymmetric Catalysis. Dalton Trans. 2014, 43, 15263–15278. 10.1039/C4DT01935K. PubMed DOI

Ben Hassine B.; Gorsane M.; Pecher J.; Martin R. H. Diastereoselective NaBH4 Reductions of (Dl) α-Keto Esters. Bull. Soc. Chim. Belg. 1985, 94, 597–603. 10.1002/bscb.19850940808. DOI

Ben Hassine B.; Gorsane M.; Pecher J.; Martin R. H. Synthèses Asymétriques Potentielles Impliquant La Réaction “Ene.”. Bull. Soc. Chim. Belg. 1987, 96, 801–808. 10.1002/bscb.19870961013. DOI

Takenaka N.; Chen J.; Captain B.; Sarangthem R. S.; Chandrakumar A. Helical Chiral 2-Aminopyridinium Ions: A New Class of Hydrogen Bond Donor Catalysts. J. Am. Chem. Soc. 2010, 132, 4536–4537. 10.1021/ja100539c. PubMed DOI

Chen J.; Takenaka N. Helical Chiral Pyridine N-Oxides: A New Family of Asymmetric Catalysts. Chem. – Eur. J. 2009, 15, 7268–7276. 10.1002/chem.200900607. PubMed DOI

Šámal M.; Míšek J.; Stará I. G.; Starý I. Organocatalysis with Azahelicenes: The First Use of Helically Chiral Pyridine-Based Catalysts in the Asymmetric Acyl Transfer Reaction. Collect. Czech. Chem. Commun. 2009, 74, 1151–1159. 10.1135/cccc2009067. DOI

Cauteruccio S.; Dova D.; Benaglia M.; Genoni A.; Orlandi M.; Licandro E. Synthesis, Characterisation, and Organocatalytic Activity of Chiral Tetrathiahelicene Diphosphine Oxides. Eur. J. Org. Chem. 2014, 2014, 2694–2702. 10.1002/ejoc.201301912. DOI

Aloui F.; El Abed R.; Marinetti A.; Ben Hassine B. Synthesis and Characterization of New Hexahelicene Derivatives. Tetrahedron Lett. 2007, 48, 2017–2020. 10.1016/j.tetlet.2007.01.058. DOI

Teplý F.; Stará I. G.; Starý I.; Kollárovič A.; Šaman D.; Vyskočil Š.; Fiedler P. Synthesis of 3-Hexahelicenol and Its Transformation to 3-Hexahelicenylamines, Diphenylphosphine, Methyl Carboxylate, and Dimethylthiocarbamate. J. Org. Chem. 2003, 68, 5193–5197. 10.1021/jo034369t. PubMed DOI

Sato I.; Yamashima R.; Kadowaki K.; Yamamoto J.; Shibata T.; Soai K. Asymmetric Induction by Helical Hydrocarbons: [6]- and [5]Helicenes. Angew. Chem., Int. Ed. 2001, 40, 1096–1098. 10.1002/1521-3773(20010316)40:6<1096::AID-ANIE10960>3.0.CO;2-K. PubMed DOI

Gingras M.; Félix G.; Peresutti R. One Hundred Years of Helicene Chemistry. Part 2: Stereoselective Syntheses and Chiral Separations of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 1007–1050. 10.1039/C2CS35111K. PubMed DOI

Šámal M.; Chercheja S.; Rybáček J.; Vacek Chocholoušová J.; Vacek J.; Bednárová L.; Šaman D.; Stará I. G.; Starý I. An Ultimate Stereocontrol in Asymmetric Synthesis of Optically Pure Fully Aromatic Helicenes. J. Am. Chem. Soc. 2015, 137, 8469–8474. 10.1021/jacs.5b02794. PubMed DOI

Reetz M. T.; Beuttenmüller E. W.; Goddard R. First Enantioselective Catalysis Using a Helical Diphosphane. Tetrahedron Lett. 1997, 38, 3211–3214. 10.1016/S0040-4039(97)00562-5. DOI

Reetz M. T.; Sostmann S. Kinetic Resolution in Pd-Catalyzed Allylic Substitution Using the Helical PHelix Ligand. J. Organomet. Chem. 2000, 603, 105–109. 10.1016/S0022-328X(00)00173-X. DOI

Yamamoto K.; Shimizu T.; Igawa K.; Tomooka K.; Hirai G.; Suemune H.; Usui K. Rational Design and Synthesis of [5]Helicene-Derived Phosphine Ligands and Their Application in Pd-Catalyzed Asymmetric Reactions. Sci. Rep. 2016, 6, 36211.10.1038/srep36211. PubMed DOI PMC

Sanogo Y.; Aillard P.; Retailleau P.; Voituriez A.; Marinetti A. Synthesis and X-Ray Diffraction Study of a Chiral Bis-Phosphahelicene Palladium (II) Complex. Chirality 2019, 31, 561–567. 10.1002/chir.23100. PubMed DOI

Fukawa N.; Osaka T.; Noguchi K.; Tanaka K. Asymmetric Synthesis and Photophysical Properties of Benzopyrano- or Naphthopyrano-Fused Helical Phosphafluorenes. Org. Lett. 2010, 12, 1324–1327. 10.1021/ol100227k. PubMed DOI

Yavari K.; Moussa S.; Ben Hassine B.; Retailleau P.; Voituriez A.; Marinetti A. 1H-Phosphindoles as Structural Units in the Synthesis of Chiral Helicenes. Angew. Chem., Int. Ed. 2012, 51, 6748–6752. 10.1002/anie.201202024. PubMed DOI

Yavari K.; Aillard P.; Zhang Y.; Nuter F.; Retailleau P.; Voituriez A.; Marinetti A. Helicenes with Embedded Phosphole Units in Enantioselective Gold Catalysis. Angew. Chem., Int. Ed. 2014, 53, 861–865. 10.1002/anie.201308377. PubMed DOI

Nakano K.; Oyama H.; Nishimura Y.; Nakasako S.; Nozaki K. λ5-Phospha[7]Helicenes: Synthesis, Properties, and Columnar Aggregation with One-Way Chirality. Angew. Chem., Int. Ed. 2012, 51, 695–699. 10.1002/anie.201106157. PubMed DOI

Yavari K.; Delaunay W.; de Rycke N.; Reynaldo T.; Aillard P.; Srebro-Hooper M.; Chang V. Y.; Muller G.; Tondelier D.; Geffroy B.; Voituriez A.; Marinetti A.; Hissler M.; Crassous J. Phosphahelicenes: From Chiroptical and Photophysical Properties to OLED Applications. Chem. – Eur. J. 2019, 25, 5303–5310. 10.1002/chem.201806140. PubMed DOI PMC

Krausová Z.; Sehnal P.; Bondzic B. P.; Chercheja S.; Eilbracht P.; Stará I. G.; Šaman D.; Starý I. Helicene-Based Phosphite Ligands in Asymmetric Transition-Metal Catalysis: Exploring Rh-Catalyzed Hydroformylation and Ir-Catalyzed Allylic Amination. Eur. J. Org. Chem. 2011, 2011, 3849–3857. 10.1002/ejoc.201100259. DOI

Žádný J.; Velíšek P.; Jakubec M.; Sýkora J.; Církva V.; Storch J. Exploration of 9-Bromo[7]Helicene Reactivity. Tetrahedron 2013, 69, 6213–6218. 10.1016/j.tet.2013.05.039. DOI

El Abed R.; Aloui F.; Genêt J.-P.; Ben Hassine B.; Marinetti A. Synthesis and Resolution of 2-(Diphenylphosphino)Heptahelicene. J. Organomet. Chem. 2007, 692, 1156–1160. 10.1016/j.jorganchem.2006.11.022. DOI

Terfort A.; Görls H.; Brunner H. The First Helical-Chiral Phosphane Ligands: Rac-[5]- and Rac-[6]-Heliphos. Synthesis 1997, 1997, 79–86. 10.1055/s-1997-1498. DOI

Stadler A.; Kappe C. O. Rapid Formation of Triarylphosphines by Microwave-Assisted Transition Metal-Catalyzed C-P Cross-Coupling Reactions. Org. Lett. 2002, 4, 3541–3543. 10.1021/ol026716b. PubMed DOI

Sudhakar A.; Katz T. J. Directive Effect of Bromine on Stilbene Photocyclizations. an Improved Synthesis of [7]Helicene. Tetrahedron Lett. 1986, 27, 2231–2234. 10.1016/S0040-4039(00)84494-9. DOI

Lloyd-Jones G. C.; Taylor N. P. Mechanism of Phosphine Borane Deprotection with Amines: The Effects of Phosphine, Solvent and Amine on Rate and Efficiency. Chem. – Eur. J. 2015, 21, 5423–5428. 10.1002/chem.201406585. PubMed DOI

Netherton M. R.; Fu G. C. Air-Stable Trialkylphosphonium Salts: Simple, Practical, and Versatile Replacements for Air-Sensitive Trialkylphosphines. Applications in Stoichiometric and Catalytic Processes. Org. Lett. 2001, 3, 4295–4298. 10.1021/ol016971g. PubMed DOI

McKinstry L.; Livinghouse T. An Efficient Procedure for the Synthesis of C-Chiral Bisphosphines. Tetrahedron 1995, 51, 7655–7666. 10.1016/0040-4020(95)00390-T. DOI

Denmark S. E.; Chang W.-T. T.; Houk K. N.; Liu P. Development of Chiral Bis-Hydrazone Ligands for the Enantioselective Cross-Coupling Reactions of Aryldimethylsilanolates. J. Org. Chem. 2015, 80, 313–366. 10.1021/jo502388r. PubMed DOI PMC

Böhm V. P. W.; Herrmann W. A. Mechanism of the Heck Reaction Using a Phosphapalladacycle as the Catalyst: Classical versus Palladium(IV) Intermediates. Chem. – Eur. J. 2001, 7, 4191–4197. 10.1002/1521-3765(20011001)7:19<4191::AID-CHEM4191>3.0.CO;2-1. PubMed DOI

Vieille-Petit L.; Luan X.; Mariz R.; Blumentritt S.; Linden A.; Dorta R. A New Class of Stable, Saturated N-Heterocyclic Carbenes with N-Naphthyl Substituents: Synthesis, Dynamic Behavior, and Catalytic Potential. Eur. J. Inorg. Chem. 2009, 1861–1870. 10.1002/ejic.200900010. DOI

Labre F.; Gimbert Y.; Bannwarth P.; Olivero S.; Duñach E.; Chavant P. Y. Application of Cooperative Iron/Copper Catalysis to a Palladium-Free Borylation of Aryl Bromides with Pinacolborane. Org. Lett. 2014, 16, 2366–2369. 10.1021/ol500675q. PubMed DOI

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr.; Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., G.A. Petersson H. N. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2004.

Becke A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785.10.1103/PhysRevB.37.785. PubMed DOI

Sheldrick G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC

Fujino S.; Yamaji M.; Okamoto H.; Mutai T.; Yoshikawa I.; Houjou H.; Tani F. Systematic Investigations on Fused π-System Compounds of Seven Benzene Rings Prepared by Photocyclization of Diphenanthrylethenes. Photochem. Photobiol. Sci. 2017, 16, 925–934. 10.1039/C7PP00040E. PubMed DOI

Farrugia L. J. ORTEP-3 for Windows - A Version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565.10.1107/S0021889897003117. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...