Genomic and Functional Analysis of Emerging Virulent and Multidrug-Resistant Escherichia coli Lineage Sequence Type 648
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
30885899
PubMed Central
PMC6535536
DOI
10.1128/aac.00243-19
PII: AAC.00243-19
Knihovny.cz E-zdroje
- Klíčová slova
- ESBL-producing clonal lineages, MDR, NFDS modeling, ST648, biofilm formation, phylogenetics, virulence,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriemie farmakoterapie mikrobiologie MeSH
- beta-laktamasy genetika MeSH
- biofilmy účinky léků MeSH
- Escherichia coli účinky léků genetika MeSH
- faktory virulence genetika MeSH
- genomika metody MeSH
- infekce močového ústrojí farmakoterapie mikrobiologie MeSH
- infekce vyvolané Escherichia coli farmakoterapie mikrobiologie MeSH
- kur domácí mikrobiologie MeSH
- lidé MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- multilokusová sekvenční typizace metody MeSH
- plazmidy genetika MeSH
- sekvenování celého genomu metody MeSH
- virulence genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- beta-laktamasy MeSH
- faktory virulence MeSH
The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n = 107) and ST10 (n = 96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in silico, in vitro, and in vivo results demonstrate that ST648 is well equipped with biofilm-associated features, while ST131 shows sophisticated signatures indicative of adaption to urinary tract infection, potentially conveying individual ecological niche adaptation. In addition, we used a recently developed NFDS (negative frequency-dependent selection) population model suggesting that ST648 will increase significantly in frequency as a cause of bacteremia within the next few years. Also, ESBL plasmids impacting biofilm formation aided in shaping and maintaining ST648 strains to successfully emerge worldwide across different ecologies. Our study contributes to understanding what factors drive the evolution and spread of emerging international high-risk clonal lineages.
Calgary Laboratory Services Diagnostic and Scientific Centre Calgary Alberta Canada
CEITEC VFU University of Veterinary and Pharmaceutical Sciences Brno Brno Czech Republic
Department of Biostatistics University of Oslo Oslo Norway
Department of Infectious Diseases Kalmar County Council Kalmar Sweden
Department of Mathematics and Statistics University of Helsinki University of Helsinki Finland
Department of Pathology and Laboratory Medicine University of Calgary Calgary Alberta Canada
Faculty of Medicine School of Public Health Imperial College London United Kingdom
Institute of Microbiology and Epizootics Free University Berlin Berlin Germany
Institute of Microbiology and Infection University of Birmingham Birmingham United Kingdom
International Center for Diarrheal Disease Research Bangladesh Dhaka Bangladesh
NG 1 Microbial Genomics Robert Koch Institute Berlin Germany
Pharmaceutical Biology Institute of Pharmacy University of Greifswald Greifswald Germany
Pharmaceutical Microbiology Institute of Pharmacy University of Greifswald Greifswald Germany
Robert Koch Institute Berlin Germany
The Wellcome Trust Sanger Institute Cambridge United Kingdom
Universidad de La Rioja Area de Bioquímica y Biología Molecular Logroño Spain
Zobrazit více v PubMed
Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE, Sebra R, Turner P, Anson LW, Kasarskis A, Batty EM, Kos V, Wilson DJ, Phetsouvanh R, Wyllie D, Sokurenko E, Manges AR, Johnson TJ, Price LB, Peto TE, Johnson JR, Didelot X, Walker AS, Crook DW, Modernizing Medical Microbiology Informatics Group. 2016. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio 7:e02162. doi:10.1128/mBio.02162-15. PubMed DOI PMC
Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW, Stanton-Cook M, Schembri MA, Beatson SA. 2016. Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. mBio 7:e00347-16. doi:10.1128/mBio.00347-16. PubMed DOI PMC
Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM, Martin V, Peacock SJ, Parkhill J. 2017. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res doi:10.1101/gr.216606.116. PubMed DOI PMC
Ewers C, Bethe A, Stamm I, Grobbel M, Kopp PA, Guerra B, Stubbe M, Doi Y, Zong Z, Kola A, Schaufler K, Semmler T, Fruth A, Wieler LH, Guenther S. 2014. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence? J Antimicrob Chemother 69:1224–1230. doi:10.1093/jac/dkt516. PubMed DOI
Peirano G, van der Bij AK, Gregson DB, Pitout JD. 2012. Molecular epidemiology over an 11-year period (2000 to 2010) of extended-spectrum beta-lactamase-producing Escherichia coli causing bacteremia in a centralized Canadian region. J Clin Microbiol 50:294–299. doi:10.1128/JCM.06025-11. PubMed DOI PMC
Zong Z, Yu R. 2010. Escherichia coli carrying the blaCTX-M-15 gene of ST648. J Med Microbiol 59:1536–1537. doi:10.1099/jmm.0.022459-0. PubMed DOI
Johnson JR, Johnston BD, Gordon DM. 2017. Rapid and specific detection of the Escherichia coli sequence type 648 complex within phylogroup F. J Clin Microbiol 55:1116–1121. doi:10.1128/JCM.01949-16. PubMed DOI PMC
McNally A, Oren Y, Kelly D, Pascoe B, Dunn S, Sreecharan T, Vehkala M, Valimaki N, Prentice MB, Ashour A, Avram O, Pupko T, Dobrindt U, Literak I, Guenther S, Schaufler K, Wieler LH, Zhiyong Z, Sheppard SK, McInerney JO, Corander J. 2016. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet 12:e1006280. doi:10.1371/journal.pgen.1006280. PubMed DOI PMC
Schaufler K, Semmler T, Pickard DJ, de Toro M, de la Cruz F, Wieler LH, Ewers C, Guenther S. 2016. Carriage of extended-spectrum beta-lactamase-plasmids does not reduce fitness but enhances virulence in some strains of pandemic Escherichia coli lineages. Front Microbiol 7:336. doi:10.3389/fmicb.2016.00336. PubMed DOI PMC
Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M, Forde BM, Phan MD, Gomes Moriel D, Peters KM, Davies M, Rogers BA, Dougan G, Rodriguez-Bano J, Pascual A, Pitout JD, Upton M, Paterson DL, Walsh TR, Schembri MA, Beatson SA. 2014. Global dissemination of a multidrug-resistant Escherichia coli clone. Proc Natl Acad Sci U S A 111:5694–5699. doi:10.1073/pnas.1322678111. PubMed DOI PMC
Pitout JD, DeVinney R. 2017. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res 6:F1000. doi:10.12688/f1000research.10609.1. PubMed DOI PMC
Hood MI, Skaar EP. 2012. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10:525–537. doi:10.1038/nrmicro2836. PubMed DOI PMC
Ewers C, Antao EM, Diehl I, Philipp HC, Wieler LH. 2009. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl Environ Microbiol 75:184–192. doi:10.1128/AEM.01324-08. PubMed DOI PMC
Johnson JR, Russo TA. 2002. Extraintestinal pathogenic Escherichia coli: “the other bad E. coli.” J Lab Clin Med 139:155–162. doi:10.1067/mlc.2002.121550. PubMed DOI
Kohler CD, Dobrindt U. 2011. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol 301:642–647. doi:10.1016/j.ijmm.2011.09.006. PubMed DOI
Peirano G, Richardson D, Nigrin J, McGeer A, Loo V, Toye B, Alfa M, Pienaar C, Kibsey P, Pitout JD. 2010. High prevalence of ST131 isolates producing CTX-M-15 and CTX-M-14 among extended-spectrum-beta-lactamase-producing Escherichia coli isolates from Canada. Antimicrob Agents Chemother 54:1327–1330. doi:10.1128/AAC.01338-09. PubMed DOI PMC
Wright KJ, Seed PC, Hultgren SJ. 2007. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9:2230–2241. doi:10.1111/j.1462-5822.2007.00952.x. PubMed DOI
Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HLT. 2010. Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6:e1001187. doi:10.1371/journal.ppat.1001187. PubMed DOI PMC
Vangchhia B, Abraham S, Bell JM, Collignon P, Gibson JS, Ingram PR, Johnson JR, Kennedy K, Trott DJ, Turnidge JD, Gordon DM. 2016. Phylogenetic diversity, antimicrobial susceptibility, and virulence characteristics of phylogroup F Escherichia coli in Australia. Microbiology 162:1904–1912. doi:10.1099/mic.0.000367. PubMed DOI
Serra DO, Mika F, Richter AM, Hengge R. 2016. The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the σE-dependent sRNA RybB. Mol Microbiol 101:136–151. doi:10.1111/mmi.13379. PubMed DOI
Gophna U, Barlev M, Seijffers R, Oelschlager TA, Hacker J, Ron EZ. 2001. Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69:2659–2665. doi:10.1128/IAI.69.4.2659-2665.2001. PubMed DOI PMC
Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808. doi:10.1046/j.1365-2958.2002.02802.x. PubMed DOI
Guenther S, Aschenbrenner K, Stamm I, Bethe A, Semmler T, Stubbe A, Stubbe M, Batsajkhan N, Glupczynski Y, Wieler LH, Ewers C. 2012. Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS One 7:e53039. doi:10.1371/journal.pone.0053039. PubMed DOI PMC
Hasan B, Olsen B, Alam A, Akter L, Melhus A. 2015. Dissemination of multidrug-resistant ESBL-producing Escherichia coli O25b-ST131 clone and role of house crow (Corvus splendens) foraging on hospital waste in Bangladesh. Clin Microbiol Infect doi:10.1016/j.cmi.2015.06.016. PubMed DOI
Mora A, Herrera A, Mamani R, López C, Alonso MP, Blanco JE, Blanco M, Dahbi G, García-Garrote F, Pita JM, Coira A, Bernárdez MI, Blanco J. 2010. Recent emergence of clonal group O25b:K1:H4-B2-ST131 ibeA strains among Escherichia coli poultry isolates, including CTX-M-9-producing strains, and comparison with clinical human isolates. Appl Environ Microbiol 76:6991–6997. doi:10.1128/AEM.01112-10. PubMed DOI PMC
McNally A, Kallonen T, Connor C, Abudahab K, Aanensen DM, Horner C, Peacock SJ, Parkhill J, Croucher NJ, Corander J. 2019. Diversification of colonization factors in a multidrug-resistant Escherichia coli lineage evolving under negative frequency-dependent selection. mBio 10:e00644-19. doi:10.1128/mBio.00644-19. PubMed DOI PMC
Pitout JDD. 2012. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol 3:9. PubMed PMC
Calhau V, Ribeiro G, Mendonca N, Da Silva GJ. 2013. Prevalent combination of virulence and plasmidic-encoded resistance in ST131 Escherichia coli strains. Virulence 4:726–729. doi:10.4161/viru.26552. PubMed DOI PMC
Clinical and Laboratory Standards Institute. 2008. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard, 3rd ed Clinical and Laboratory Standards Institute, Wayne, PA.
Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi:10.1101/gr.074492.107. PubMed DOI PMC
Otto TD, Sanders M, Berriman M, Newbold C. 2010. Iterative correction of reference nucleotides (iCORN) using second generation sequencing technology. Bioinformatics 26:1704–1707. doi:10.1093/bioinformatics/btq269. PubMed DOI PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153. PubMed DOI
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. 2012. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576. doi:10.1101/gr.129684.111. PubMed DOI PMC
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033. PubMed DOI PMC
Corander J, Tang J. 2007. Bayesian analysis of population structure based on linked molecular information. Math Biosci 205:19–31. doi:10.1016/j.mbs.2006.09.015. PubMed DOI
Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM, Harris SR. 2018. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 34:292–293. doi:10.1093/bioinformatics/btx610. PubMed DOI PMC
To TH, Jung M, Lycett S, Gascuel O. 2016. Fast dating using least-squares criteria and algorithms. Syst Biol 65:82–97. doi:10.1093/sysbio/syv068. PubMed DOI PMC
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. doi:10.1093/bioinformatics/btv421. PubMed DOI PMC
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi:10.1093/jac/dks261. PubMed DOI PMC
Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501–1510. doi:10.1128/JCM.03617-13. PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST plus: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421. PubMed DOI PMC
Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. doi:10.1186/1471-2164-12-402. PubMed DOI PMC
Romling U. 2005. Characterization of the rdar morphotype, a multicellular behavior in Enterobacteriaceae. Cell Mol Life Sci 62:1234–1246. doi:10.1007/s00018-005-4557-x. PubMed DOI PMC
Blomfield IC, McClain MS, Princ JA, Calie PJ, Eisenstein BI. 1991. Type 1 fimbriation and fimE mutants of Escherichia coli K-12. J Bacteriol 173:5298–5307. doi:10.1128/jb.173.17.5298-5307.1991. PubMed DOI PMC
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T. 2006. Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Systems Biol 2:2006.2007. doi:10.1038/msb4100049. PubMed DOI PMC
Schwyn B, Neilands JB. 1987. Universal chemical-assay for the detection and determination of siderophores. Anal Biochem 160:47–56. doi:10.1016/0003-2697(87)90612-9. PubMed DOI
Cheng L, Connor TR, Siren J, Aanensen DM, Corander J. 2013. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol 30:1224–1228. doi:10.1093/molbev/mst028. PubMed DOI PMC