Cultivation Intensity in Combination with Other Ecological Factors as Limiting Ones for the Abundance of Phytopathogenic Fungi on Wheat
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MZe-RO0418
Ministry of Agriculture
PubMed
30895363
DOI
10.1007/s00248-019-01337-3
PII: 10.1007/s00248-019-01337-3
Knihovny.cz E-zdroje
- Klíčová slova
- Cluster analysis, Cultivation intensity, Hymenula cerealis, Mycosphaerella graminicola, Puccinia tritici, Pyrenophora tritici-repentis, Rainfalls, Temperature, Winter wheat,
- MeSH
- Ascomycota klasifikace genetika růst a vývoj izolace a purifikace MeSH
- Basidiomycota klasifikace genetika růst a vývoj izolace a purifikace MeSH
- ekosystém MeSH
- nemoci rostlin mikrobiologie MeSH
- pšenice mikrobiologie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
In field and laboratory experiments during 2014-2017, we investigated the influence of lower and higher cultivation intensity of wheat and ecological factors (weather-temperature and rainfalls, year) on the occurrence of phytopathogenic fungi on the leaves of winter wheat. The prevailing fungi in those years were Mycosphaerella graminicola (Fuckel) J. Schrott and Pyrenophora tritici-repentis (Died.) Drechsler. Using cluster analysis, we statistically evaluated interrelationships of known factors on the abundance of the fungi on leaf surfaces. Our results showed strongest correlation with Mycosphaerella graminicola and Pyrenophora tritici-repentis abundance to be with lower cultivation intensity and year done by the temperature and the rainfalls. The two pathogens-Puccinia tritici Oerst and Hymenula cerealis Ellis & Everh. occurred only very sparsely in some years and had little positive or negative correlation with named factors. The semi-early and semi-late winter wheat varieties Matchball, Annie, Fakir, and Tobak were used for our experiments. Higher cultivation intensity had protective effect against leaf phytopathogenic fungi.
Zobrazit více v PubMed
Appl Environ Microbiol. 2003 Apr;69(4):1875-83 PubMed
Environ Pollut. 2000 Jun;108(3):317-26 PubMed
Rev Iberoam Micol. 1997 Dec;14(4):168-72 PubMed
Philos Trans R Soc Lond B Biol Sci. 2005 Nov 29;360(1463):2021-35 PubMed
Annu Rev Phytopathol. 2006;44:489-509 PubMed
Annu Rev Phytopathol. 2007;45:203-20 PubMed
New Phytol. 2008;177(1):229-38 PubMed
Bioelectromagnetics. 2010 Feb;31(2):120-9 PubMed
Trends Ecol Evol. 2010 Jul;25(7):387-95 PubMed
Mycologia. 2004 May-Jun;96(3):558-71 PubMed
Trends Genet. 2013 Apr;29(4):233-40 PubMed
Evol Appl. 2012 Jun;5(4):341-52 PubMed
Phytopathology. 2015 Aug;105(8):1036-42 PubMed
Fungal Genet Biol. 2015 Jun;79:29-32 PubMed
Int J Biometeorol. 2017 Jun;61(6):967-975 PubMed
Proc Biol Sci. 2017 Jan 25;284(1847): PubMed
Microbiol Spectr. 2017 Mar;5(2): PubMed
Plant Pathol J. 2017 Apr;33(2):109-117 PubMed
Microb Ecol. 2018 Jul;76(1):205-214 PubMed
Plant Dis. 2001 Jul;85(7):785-789 PubMed