Post-glacial range formation of temperate forest understorey herbs - Insights from a spatio-temporally explicit modelling approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38504871
PubMed Central
PMC10947399
DOI
10.1111/geb.13677
PII: GEB13677
Knihovny.cz E-zdroje
- Klíčová slova
- Europe, Pleistocene refugia, dispersal limitation, forest herbs, long‐distance dispersal, post‐glacial recolonization, range filling, spatio‐temporally explicit modelling,
- Publikační typ
- časopisecké články MeSH
AIM: Our knowledge of Pleistocene refugia and post-glacial recolonization routes of forest understorey plants is still very limited. The geographical ranges of these species are often rather narrow and show highly idiosyncratic, often fragmented patterns indicating either narrow and species-specific ecological tolerances or strong dispersal limitations. However, the relative roles of these factors are inherently difficult to disentangle. LOCATION: Central and south-eastern Europe. TIME PERIOD: 17,100 BP - present. MAJOR TAXA STUDIED: Five understorey herbs of European beech forests: Aposeris foetida, Cardamine trifolia, Euphorbia carniolica, Hacquetia epipactis and Helleborus niger. METHODS: We used spatio-temporally explicit modelling to reconstruct the post-glacial range dynamics of the five forest understorey herbs. We varied niche requirements, demographic rates and dispersal abilities across plausible ranges and simulated the spread of species from potential Pleistocene refugia identified by phylogeographical analyses. Then we identified the parameter settings allowing for the most accurate reconstruction of their current geographical ranges. RESULTS: We found a largely homogenous pattern of optimal parameter settings among species. Broad ecological niches had to be combined with very low but non-zero rates of long-distance dispersal via chance events and low rates of seed dispersal over moderate distances by standard dispersal vectors. However, long-distance dispersal events, although rare, led to high variation among replicated simulation runs. MAIN CONCLUSIONS: Small and fragmented ranges of many forest understorey species are best explained by a combination of broad ecological niches and rare medium- and long-distance dispersal events. Stochasticity is thus an important determinant of current species ranges, explaining the idiosyncratic distribution patterns of the study species despite strong similarities in refugia, ecological tolerances and dispersal abilities.
Department of Botany and Biodiversity Research University of Vienna Rennweg 14 Vienna 1030 Austria
Department of Botany University of Innsbruck Sternwartestr 15 Innsbruck 6020 Austria
Institute of Botany of the Czech Academy of Sciences Zámek 1 Průhonice 252 43 Czech Republic
Zobrazit více v PubMed
Allouche, O. , Tsoar, A. , & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232.
Amante, C. , & Eakins, B. W. (2009). ETOPO1 1 Arc‐minute global relief model: Procedures, data sources and analysis, ed. N. NOAA Technical Memorandum NESDIS NGDC‐24. National Geophysical Data Center, NOAA. 10.7289/V5C8276M. [download Aug 2019]. DOI
Barbet‐Massin, M. , Jiguet, F. , Albert, C. H. , & Thuiller, W. (2012). Selecting pseudo‐absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3, 327–338.
Bohn, U. , & Neuhäusl, R. (2000). Karte der natürlichen vegetation Europas/map of the natural vegetation of Europe. Maßstab/Scale 1: 2 500 000. Landwirtschaftsverlag.
Cain, M. L. , Damman, H. , & Muir, A. (1998). Seed dispersal and the Holocene migration of woodland herbs. Ecological Monographs, 68, 325–347.
Clark, J. S. (1998). Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. The American Naturalist, 152, 204–224. PubMed
Cotto, O. , Wessely, J. , Georges, D. , Klonner, G. , Schmid, M. , Dullinger, S. , Thuiller, W. , & Guillaume, F. (2017). A dynamic eco‐evolutionary model predicts slow response of alpine plants to climate warming. Nature Communications, 8, 15399. PubMed PMC
Dullinger, S. , Dendoncker, N. , Gattringer, A. , Leitner, M. , Mang, T. , Moser, D. , Mücher, C. A. , Plutzar, C. , Rounsevell, M. , Willner, W. , Zimmermann, N. E. , & Hülber, K. (2015). Modelling the effect of habitat fragmentation on climate‐driven migration of European forest understorey plants. Diversity and Distributions, 21, 1375–1387.
Dullinger, S. , Gattringer, A. , Thuiller, W. , Moser, D. , Zimmermann, N. E. , Guisan, A. , Willner, W. , Plutzar, C. , Leitner, M. , Mang, T. , Caccianiga, M. , Dirnböck, T. , Ertl, S. , Fischer, A. , Lenoir, A. , Svenning, J.‐C. , Psomas, A. , Schmatz, D. R. , Silc, U. , … Hülber, K. (2012). Extinction debt of high‐mountain plants under twenty‐first‐century climate change. Nature Climate Change, 2, 619–622.
Early, R. , & Sax, D. F. (2014). Niche shift during naturalization. Global Ecology and Biogeography, 23, 1356–1365.
Ehlers, J. , Gibbard, P. L. , & Hughes, P. D. (2011). Quaternary glaciations. Extent and chronology. Developments in Quaternary Science, 15, 1–1108.
Fischer, M. A. , Oswald, K. , & Adler, W. (2008). Exkursionsflora für Österreich (1391). Liechtenstein und Südtirol.
Fordham, D. A. , Saltré, F. , Haythorne, S. , Wigley, T. M. L. , Otto‐Bliesner, B. L. , Chan, K. C. , & Brook, B. W. (2017). PaleoView: A tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography, 40, 1348–1358.
Green, A. J. , Baltzinger, C. , & Lovas‐Kiss, Á. (2022). Plant dispersal syndromes are unreliable, especially for predicting zoochory and long‐distance dispersal. Oikos, 2022, e08327.
Griffin, S. R. , & Barrett, S. C. H. (2004). Post‐glacial history of Trillium grandiflorum (Melanthiaceae) in eastern North America: Inferences from phylogeography. American Journal of Botany, 91, 465–473. PubMed
Grivet, D. , & Petit, R. J. (2003). Chloroplast DNA phylogeography of the hornbeam in Europe: Evidence for a bottleneck at the outset of postglacial colonization. Conservation Genetics, 4, 47–56.
Harrison, S. , Bartlein, P. , Izumi, K. , Li, G. , Annan, J. , Hargreaves, J. , Braconnot, P. , & Kageyama, M. (2015). Evaluation of CMIP5 palaeo‐simulations to improve climate projections. Nature Climate Change, 5, 735–743.
Higgins, S. I. , Nathan, R. , & Cain, M. L. (2003). Are long‐distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology, 84, 1945–1956.
Hodell, D. A. , Nicholl, J. A. , Bontognali, T. R. R. , Danino, S. , Dorador, J. , & Dowdeswell, J. A. (2017). Anatomy of Heinrich layer 1 and its role in the last deglaciation. Paleoceanography, 32, 284–303.
Howe, H. F. , & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201–228.
Hülber, K. , Wessely, J. , Gattringer, A. , Moser, D. , Kuttner, M. , Essl, F. , Leitner, M. , Winkler, M. , Ertl, S. , Willner, W. , Kleinbauer, I. , Sauberer, N. , Mang, T. , Zimmermann, N. E. , & Dullinger, S. (2016). Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Global Change Biology, 22, 2608–2619. PubMed
Hutchinson, G. E. (1957). Concluding remarks. Quantitative Biology, 22, 415–427.
Jiménez‐Alfaro, B. , Girardello, M. , Chytrý, M. , Svenning, J.‐C. , Willner, W. , Gégout, J.‐C. , Agrillo, E. , Campos, J. A. , Jandt, U. , Kącki, Z. , Šilc, U. , Slezák, M. , Tichý, L. , Tsiripidis, I. , Turtureanu, P. D. , Ujházyová, M. , & Wohlgemuth, T. (2018). History and environment shape species pools and community diversity in European beech forests. Nature Ecology & Evolution, 2, 483–490. PubMed
Jogan, N. , Bačič, T. , Frajman, B. , Leskovar, I. , Naglič, D. , Podobnik, A. , Rozman, B. , Strgulc‐Krajšek, S. , & Trčak, B. (2001). Gradivo za atlas flore Slovenije. Materials for the atlas of flora of Slovenia. Center za kartografijo favne in flore.
Jordano, P. (2017). What is long‐distance dispersal? And a taxonomy of dispersal events. Journal of Ecology, 105, 75–84.
Karger, D. N. , Conrad, O. , Böhner, J. , Kawohl, T. , Kreft, H. , Soria‐Auza, R. W. , Zimmermann, N. E. , Linder, H. P. , & Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4, 170122. PubMed PMC
Lambeck, K. , Rouby, H. , Purcell, A. , Sun, Y. Y. , & Sambridge, M. (2014). Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 111, 15296–15303. PubMed PMC
Kirschner, P. , Záveská, E. , Hülber, K. , Wessely, J. , , Willner, W. , Schönswetter, P. , & Frajman, B. (submitted). Evolutionary dynamics of Euphorbia carniolica suggest a complex Plio‐Pleistocene history of understorey species of deciduous forest in southeastern Europe. (submitted to Molecular Ecology). PubMed PMC
Lavergne, S. , Mouquet, N. , Thuiller, W. , & Ronce, O. (2010). Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics, 41, 321–350.
Lemey, P. , Rambaut, A. , Welch, J. J. , & Suchard, M. A. (2010). Phylogeography takes a relaxed random walk in continuous space and time. Molecular Biology and Evolution, 27, 1877–1885. PubMed PMC
Leroy, S. A. G. , & Arpe, K. (2007). Glacial refugia for summergreen trees in Europe and south‐West Asia as proposed by ECHAM3 time‐slice atmospheric model simulations. Journal of Biogeography, 34, 2115–2128.
Leuschner, C. , & Ellenberg, H. (2017). Ecology of central European forests. Springer.
Magri, D. , Vendramin, G. G. , Comps, B. , Dupanloup, I. , Geburek, T. , Gömöry, D. S. , Lataowa, M. , Litt, T. , Paule, L. , Roure, J. M. , Tantau, I. , van der Knaap, W. O. , Petit, R. J. , & Beaulieu, J.‐L. (2006). A new scenario for the quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytologist, 171, 199–221. PubMed
Meusel, H. , Jäger, E. , Bräutigam, S. , Knapp, H.‐D. , Rauschert, S. , & Weinert, E. (1992). Vergleichende Chorologie der zentraleuropäischen Flora, Band III. Gustav Fischer Verlag.
Meusel, H. , Jäger, E. , Rauschert, S. , & Weinert, E. (1978). Vergleichende Chorologie der zentraleuropäischen Flora, Band II. Gustav Fischer Verlag.
Miller, K. G. , Kominz, M. A. , Browning, J. V. , Wright, J. D. , Mountain, G. S. , Katz, M. E. , Sugarman, P. J. , Cramer, B. S. , Christie‐Blick, N. , & Pekar, S. F. (2005). The phanerozoic record of global sea‐level change. Science, 310, 1293–1298. PubMed
Nathan, R. (2006). Long‐distance dispersal of plants. Science, 313, 786–788. PubMed
Nathan, R. , Schurr, F. M. , Spiegel, O. , Steinitz, O. , Trakhtenbrot, A. , & Tsoar, A. (2008). Mechanisms of long‐distance seed dispersal. Trends in Ecology & Evolution, 23, 638–647. PubMed
Pearson, R. G. , & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361–371.
Petit, R. J. , Brewer, S. , Bordács, S. , Burg, K. , Cheddadi, R. , Coart, E. , Cottrell, J. , Csaikl, U. M. , van Dam, B. , Deans, J. D. , Espinel, S. , Fineschi, S. , Finkeldey, R. , Glaz, I. , Goicoechea, P. G. , Svejgaard Jensen, J. , König, A. O. , Lowe, A. J. , Flemming Madsen, S. , … Kremer, A. (2002). Identification of refugia and post‐glacial recolonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management, 156, 49–74.
Poldini, L. , Oriolo, G. , & Vidali, M. (2002). Nuovo atlante corologico delle piante vascolari nel Friuli Venetia Giulia. Regione Autonoma Friuli Venezia Giulia.
Razgour, O. , Forester, B. , Taggart, J. B. , Bekaert, M. , Juste, J. , Ibáñez, C. , & Manel, S. (2019). Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proceedings of the National Academy of Sciences of the United States of America, 116, 10418–10423. PubMed PMC
Römermann, C. , Tackenberg, O. , & Poschlod, P. (2005). How to predict attachment potential of seeds to sheep and cattle coat from simple morphological seed traits. Oikos, 110, 219–230.
Semenchuk, P. , Moser, D. , Essl, F. , Schindler, S. , Wessely, J. , Gattringer, A. , & Dullinger, S. (2021). Future representation of species' climatic niches in protected areas: A case study with Austrian endemics. Frontiers in Ecology and Evolution, 9, 685753.
Sheth, S. N. , Morueta‐Holme, N. , & Angert, A. L. (2020). Determinants of geographic range size in plants. New Phytologist, 226, 650–665. PubMed
Slovák, M. , Kucera, J. , Turis, P. , & Zozomová‐Lihová, J. (2012). Multiple glacial refugia and postglacial colonization routes inferred for a woodland geophyte, Cyclamen purpurascens: Patterns concordant with the Pleistocene history of broadleaved and coniferous tree species. Biological Journal of the Linnean Society, 105, 741–760.
Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1115–1123. PubMed
Stark, J. R. , & Fridley, J. D. (2022). Microclimate‐based species distribution models in complex forested terrain indicate widespread cryptic refugia under climate change. Global Ecology and Biogeography, 31, 562–575.
Svenning, J.‐C. , Fløjgaard, C. , Marske, K. A. , Nógues‐Bravo, D. , & Normand, S. (2011). Applications of species distribution modeling to paleobiology. Quaternary Science Reviews, 30, 2930–2947.
Svenning, J.‐C. , Normand, S. , & Kageyama, M. (2008). Glacial refugia of temperate trees in Europe: Insights from species distribution modelling. Journal of Ecology, 96, 1117–1127.
Svenning, J.‐C. , Normand, S. , & Skov, F. (2008). Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography, 31, 316–326.
Tribsch, A. , & Schönswetter, P. (2003). Patterns of endemism and comparative phylogeography confirm palaeo‐environmental evidence for Pleistocene refugia in the eastern Alps. Taxon, 52, 477–497.
Ujházyová, M. , Ujházy, K. , Chytrý, M. , Willner, W. , Čiliak, M. , Máliš, F. , & Slezák, M. (2016). Diversity of beech forest vegetation in the eastern Alps, Bohemian Massif and the Western Carpathians. Preslia, 88, 435–457.
Urbaniak, J. , Kwiatkowski, P. , & Ronikier, M. (2018). Postglacial history and current population genetic diversity of a central‐European forest plant Hacquetia epipactis . Preslia, 90, 39–57.
Vellend, M. , Myers, J. A. , Gardescu, S. , & Marks, P. L. (2003). Dispersal of Trillium seeds by deer: Implications for long‐distance migration of forest herbs. Ecology, 84, 1067–1072.
Voisin, C. , Kirschner, P. , Záveská, E. , Frajman, B. , Hülber, K. , Wessely, J. , Willner, W. , Schönswetter, P. , & Carnicero, P. (in prep.). No longer “cryptic” – genomic evidence for deciduous forest refugia in the Alps, Carpathians and northern Apennines. (manuscript).
Wessely, J. , Gattringer, A. , Guillaume, F. , Hülber, K. , Klonner, G. , Moser, D. , & Dullinger, S. (2022). Climate warming may increase the frequency of cold‐adapted haplotypes in alpine plants. Nature Climate Change, 12, 77–82.
Wessely, J. , Hülber, K. , Gattringer, A. , Kuttner, M. , Moser, D. , Rabitsch, W. , Schindler, S. , Dullinger, S. , & Essl, F. (2017). Habitat‐based conservation strategies cannot compensate for climate‐change‐induced range loss. Nature Climate Change, 7, 823–828.
Willner, W. , Di Pietro, R. , & Bergmeier, E. (2009). Phytogeographical evidence for post‐glacial dispersal limitation of European beech forest species. Ecography, 32, 1011–1018.
Willner, W. , Jiménez‐Alfaro, B. , Agrillo, E. , Biurrun, I. , Campos, J. A. , Čarni, A. , Casella, L. , Csiky, J. , Ćušterevska, R. , Didukh, Y. P. , Ewald, J. , Jandt, U. , Jansen, F. , Kącki, Z. , Kavgacı, A. , Lenoir, J. , Marinšek, A. , Onyshchenko, V. , Rodwell, J. , … Chytrý, M. (2017). Classification of European beech forests: A gordian knot? Applied Vegetation Science, 20, 494–512.
Wolfram Research, Inc . (2019). Mathematica, version 12.0. Wolfram Research, Inc.
Zasadni, J. , & Kłapyta, P. (2014). The Tatra Mountains during the Last Glacial Maximum. Journal of Maps, 10, 440–456.
Záveská, E. , Kirschner, P. , Frajman, B. , Wessely, J. , Willner, W. , Gattringer, A. , Hülber, K. , Lazić, D. , Dobeš, C. , & Schönswetter, P. (2021). Evidence for glacial refugia of the forest understorey species Helleborus niger (Ranunculaceae) in the southern as well as in the northern limestone Alps. Frontiers in Plant Science, 12, 683043. PubMed PMC