Evidence for Glacial Refugia of the Forest Understorey Species Helleborus niger (Ranunculaceae) in the Southern as Well as in the Northern Limestone Alps
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P 29413
Austrian Science Fund FWF - Austria
PubMed
34040627
PubMed Central
PMC8141911
DOI
10.3389/fpls.2021.683043
Knihovny.cz E-zdroje
- Klíčová slova
- Alps, Helleborus niger, RAD sequencing, demographic modeling, forest understorey, glacial refugia, species distribution modeling,
- Publikační typ
- časopisecké články MeSH
Glacial refugia of alpine and subnival biota have been intensively studied in the European Alps but the fate of forests and their understory species in that area remains largely unclear. In order to fill this gap, we aimed at disentangling the spatiotemporal diversification of disjunctly distributed black hellebore Helleborus niger (Ranunculaceae). We applied a set of phylogeographic analyses based on restriction-site associated DNA sequencing (RADseq) data and plastid DNA sequences to a range-wide sampling of populations. These analyses were supplemented with species distribution models generated for the present and the Last Glacial Maximum (LGM). We used exploratory analyses to delimit genomically coherent groups and then employed demographic modeling to reconstruct the history of these groups. We uncovered a deep split between two major genetic groups with western and eastern distribution within the Southern Limestone Alps, likely reflecting divergent evolution since the mid-Pleistocene in two glacial refugia situated along the unglaciated southern margin of the Alps. Long-term presence in the Southern Limestone Alps is also supported by high numbers of private alleles, elevated levels of nucleotide diversity and the species' modeled distribution at the LGM. The deep genetic divergence, however, is not reflected in leaf shape variation, suggesting that the morphological discrimination of genetically divergent entities within H. niger is questionable. At a shallower level, populations from the Northern Limestone Alps are differentiated from those in the Southern Limestone Alps in both RADseq and plastid DNA data sets, reflecting the North-South disjunction within the Eastern Alps. The underlying split was dated to ca. 0.1 mya, which is well before the LGM. In the same line, explicit tests of demographic models consistently rejected the hypothesis that the partial distribution area in the Northern Limestone Alps is the result of postglacial colonization. Taken together, our results strongly support that forest understory species such as H. niger have survived the LGM in refugia situated along the southern, but also along the northern or northeastern periphery of the Alps. Being a slow migrator, the species has likely survived repeated glacial-interglacial circles in distributional stasis while the composition of the tree canopy changed in the meanwhile.
Department of Botany and Biodiversity Research University of Vienna Vienna Austria
Department of Botany University of Innsbruck Innsbruck Austria
Institute of Botany of the Czech Academy of Sciences Průhonice Czechia
Institute of Forest Genetics Austrian Research Centre for Forests Vienna Austria
Zobrazit více v PubMed
Adams A. M., Hudson R. R. (2004). Maximum-likelihood estimation of demographic parameters using the frequency spectrum of unlinked single-nucleotide polymorphisms. Genetics 168, 1699–1712. 10.1534/genetics.104.030171, PMID: PubMed DOI PMC
Aeschimann D., Lauber K., Moser D. M., Theurillat J. P. (2004). Flora Alpina: Ein Atlas Sämtlicher 4500 Gefässpflanzen der Alpen. Bern: Haupt.
Angelis K., Dos Reis M. (2015). The impact of ancestral population size and incomplete lineage sorting on Bayesian estimation of species divergence times. Curr. Zool. 61, 874–885. 10.1093/czoolo/61.5.874 DOI
Avise J. C. (2000). Phylogeography: The History and Formation of Species. Cambridge: Harvard University Press.
Banbury B., Leaché A. (2014). Phrynomics: an SNP toolkit. R package version 2.0. Available at: https://github.com/bbanbury/phrynomics/issues (Accessed July 05, 2020).
Barbet-Massin M., Jiguet F., Albert C., Thuiller W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338. 10.1111/j.2041-210X.2011.00172.x DOI
Burnham K. P., Anderson D. R. (2002). Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. New York: Springer.
Catchen J. M., Amores A., Hohenlohe P., Cresko W., Postlethwait J. H. (2011). Stacks: building and genotyping loci de novo from short-read sequences. G3 1, 171–182. 10.1534/g3.111.000240, PMID: PubMed DOI PMC
Catchen J., Hohenlohe P., Bassham S., Amores A., Cresko W. (2013). Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140. 10.1111/mec.12354, PMID: PubMed DOI PMC
Charles K. L., Bell R. C., Blackburn D. C., Burger M., Fujita M. K., Gvoždík V., et al. . (2018). Sky, sea, and forest islands: diversification in the African leaf-folding frog Afrixalus paradorsalis (Anura: Hyperoliidae) of the lower Guineo-Congolian rain forest. J. Biogeogr. 45, 1781–1794. 10.1111/jbi.13365 DOI
Charlesworth B. (1994). Evolution in Age-Structured Populations. Cambridge: Cambridge University Press.
Chrtková A. (1997). “Helleboraceae Loisel. – čemeřicovité,” in Květena České Republiky. Vol. 1. 2nd Edn. eds. Slavík B., Hejný S. (Praha: Academia; ), 365–403.
Clement M., Posada D., Crandall K. A. (2000). TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1660. 10.1046/j.1365-294x.2000.01020.x, PMID: PubMed DOI
Comes H. P., Kadereit J. W. (1998). The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci. 3, 432–438. 10.1016/S1360-1385(98)01327-2 DOI
D’Amato G., Bianchi G. (1989). Heterochromatin and Ag-NOR staining in some species of Helleborus (Ranunculaceae). Caryologia 42, 19–26. 10.1080/00087114.1989.10796949 DOI
Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., et al. . (2011). 1000 Genomes Project Analysis Group. The variant call format and vcftools. Bioinformatics 27, 2156–2158. 10.1093/bioinformatics/btr330, PMID: PubMed DOI PMC
Daneck H., Fér T., Marhold K. (2016). Glacial survival in northern refugia? Phylogeography of the temperate shrub Rosa pendulina L. (Rosaceae): AFLP vs. chloroplast DNA variation. Biol. J. Linn. Soc. 119, 704–718. 10.1111/bij.12619 DOI
Dullinger S., Gattringer A., Thuiller W., Moser D., Zimmermann N. E., Guisan A., et al. . (2012b). Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Chang. 2, 619–622. 10.1038/nclimate1514 DOI
Dullinger S., Willner W., Plutzar C., Englisch T., Schratt-Ehrendorfer L., Moser D., et al. . (2012a). Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. 21, 829–840. 10.2307/23255818 DOI
Ehlers J., Gibbard P. L., Hughes P. D. (2011). Quaternary Glaciations – Extent and Chronology: A Closer Look. Amsterdam: Elsevier Science Bv.
Ellenberg H., Leuschner C. (2010). Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 6th Edn. Stuttgart: UTB.
Elleouet J. S., Aitken S. N. (2018). Exploring approximate Bayesian computation for inferring recent demographic history with genomic markers in nonmodel species. Mol. Ecol. Resour. 18, 525–540. 10.1111/1755-0998.12758, PMID: PubMed DOI
Evanno G., Regnaut S., Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. 10.1111/j.1365-294X.2005.02553.x, PMID: PubMed DOI
Falch M., Schönswetter P., Frajman B. (2019). Both vicariance and dispersal have shaped the genetic structure of Eastern Mediterranean Euphorbia myrsinites (Euphorbiaceae). Perspect. Plant Ecol. Evol. Syst. 39:125459. 10.1016/j.ppees.2019.125459 DOI
Fischer M. A., Adler W., Oswald K. (2008). Exkursionsflora für Österreich, Liechtenstein und Südtirol. 3rd Edn. Linz: Biologiezentrum des Oberösterreichischen Landesmuseums.
Flouri T., Jiao X., Rannala B., Yang Z. (2018). Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 35, 2585–2593. 10.1093/molbev/msy147, PMID: PubMed DOI PMC
Fordham D. A., Saltre F., Haythorne S., Wigley T. M. L., Otto-Bliesner B. L., Chan K. C., et al. . (2017). PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358. 10.1111/ecog.03031 DOI
Frajman B., Schönswetter P. (2017). Amphi-Adriatic distributions in plants revisited: Pleistocene trans-Adriatic dispersal in the Euphorbia barrelieri group (Euphorbiaceae). Bot. J. Linn. Soc. 185, 240–252. 10.1093/botlinnean/box055 DOI
Froitzheim N., Plašienka D., Schuster R. (2008). “Alpine tectonics of the Alps and Western Carpathians,” in The Geology of Central Europe: Mesozoic and Cenozoic. Vol. 2. ed. McCann T. (London: Geological Society of London; ).
Gubler M., Henne P. D., Schwörer C., Boltshauser-Kaltenrieder P., Lotter A. F., Brönnimann S., et al. . (2018). Microclimatic gradients provide evidence for a glacial refugium for temperate trees in a sheltered hilly landscape of Northern Italy. J. Biogeogr. 45, 2564–2575. 10.1111/jbi.13426 DOI
Gutenkunst R. N., Hernandez R. D., Williamson S. H., Bustamante C. D. (2009). Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5:e1000695. 10.1371/journal.pgen.1000695, PMID: PubMed DOI PMC
Hammer Ø., Harper D., Ryan P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9.
Harris I., Jones P. D., Osborn T. J., Lister D. H. (2014). Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642. 10.1002/joc.3711 DOI
Hewitt G. M. (2001). Speciation, hybrid zones and phylogeography – or seeing genes in space and time. Mol. Ecol. 10, 537–549. 10.1046/j.1365-294x.2001.01202.x, PMID: PubMed DOI
Hodell D. A., Nicholl J. A., Bontognali T. R. R., Danino S., Dorador J., Dowdeswell J. A. (2017). Anatomy of Heinrich layer 1 and its role in the last deglaciation. Paleoceanography 32, 284–303. 10.1002/2016PA003028 DOI
Hyndman R. J., Einbeck J., Wand M. P. (2020). Hdrcde: Highest Density Regions and Conditional Density Estimation. R package version 3.4. Available at: https://pkg.robjhyndman.com/hdrcde/ (Accessed April 19, 2020).
Ivy-Ochs S., Kerschner H., Reuther A., Preusser F., Heine K., Maisch M., et al. . (2008). Chronology of the last glacial cycle in the European Alps. J. Quat. Sci. 23, 559–573. 10.1002/jqs.1202 DOI
Kadereit W., Lauterbach J. M., Kandziora M., Spillmann J., Nyffeler R. (2019). Dual colonization of European high-altitude areas from Asia by Callianthemum (Ranunculaceae). Plant Syst. Evol. 305, 431–443. 10.1007/s00606-019-01583-5 DOI
Kaltenrieder P., Belis C. A., Hofstetter S., Ammann B., Ravazzi C., Tinner W. (2009). Environmental and climatic conditions at a potential glacial refugial site of tree species near the Southern Alpine glaciers. New insights from multiproxy sedimentary studies at Lago della Costa (Euganean Hills, Northeastern Italy). Quat. Sci. Rev. 28, 2647–2662. 10.1016/j.quascirev.2009.05.025 DOI
Karger D. N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., et al. . (2017a). Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4:170122. 10.1038/sdata.2017.122, PMID: PubMed DOI PMC
Karger D. N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., et al. . (2017b). Data from climatologies at high resolution for the earth’s land surface areas. Dryad Digit. Repos. 10.5061/dryad.kd1d4 PubMed DOI PMC
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., et al. . (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. 10.1093/bioinformatics/bts199, PMID: PubMed DOI PMC
Klotz S., Kühn I., Durka W. (2002). Biolflor – Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schr. Veg. 38, 1–334.
Kropf M., Comes H. P., Kadereit J. W. (2006). Long-distance dispersal vs vicariance: the origin and genetic diversity of alpine plants in the Spanish Sierra Nevada. New Phytol. 172, 169–184. 10.1111/j.1469-8137.2006.01795.x, PMID: PubMed DOI
Landolt E. (1977). Flora Indicativa. Ökologische Zeigerwerte und Biologische Kennzahlen zur Flora der Schweiz und der Alpen. 2nd Edn. Bern, Stuttgart und Wien: Haupt.
Leaché A. D., Banbury B. L., Felsenstein J., De Oca A. N. M., Stamatakis A. (2015). Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047. 10.1093/sysbio/syv053, PMID: PubMed DOI PMC
Liu Z., Otto-Bliesner B. L., He F., Brady E. C., Tomas R., Clark P. U., et al. . (2009). Transient simulation of last deglaciation with a new mechanism for bolling-allerod warming. Science 325, 310–314. 10.1126/science.1171041, PMID: PubMed DOI
Löve Á. (1971). IOPB chromosome number reports XXXIV. Taxon 20, 809–882. 10.1002/j.1996-8175.1971.tb03208.x DOI
Magri D., Vendramin G. G., Comps B., Dupanloup I., Geburek T., Gömöry D. S., et al. . (2006). A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol. 171, 199–221. 10.1111/j.1469-8137.2006.01740.x, PMID: PubMed DOI
Maier P. A., Vandergast A. G., Ostoja S. M., Aguilar A., Bohonak A. J. (2019). Pleistocene glacial cycles drove lineage diversification and fusion in the Yosemite toad (Anaxyrus canorus). Evolution 73, 2476–2496. 10.1111/evo.13868, PMID: PubMed DOI
Mattews B. (1989). Hellebores. Pershore, United Kingdom: AGS Publications Ltd.
Merxmüller H. (1952). Untersuchungen zur Sippengliederung und Arealbildung in den Alpen. I. Jahrb. Vereins Schutze Alpenpflanzen-Tiere 17, 96–133.
Merxmüller H. (1953). Untersuchungen zur Sippengliederung und Arealbildung in den Alpen. II. Jahrb. Vereins Schutze Alpenpflanzen-Tiere 18, 138–158.
Merxmüller H. (1954). Untersuchungen zur Sippengliederung und Arealbildung in den Alpen. III. Jahrb. Vereins Schutze Alpenpflanzen-Tiere 19, 97–139.
Meusel H., Jäger E., Weinert E. (1965). Vergleichende Chorologie der Zentraleuropäischen Flora. Karten. Jena: Gustav Fischer.
Monegato G., Ravazzi C., Culiberg M., Pini R., Bavec M., Calderoni G., et al. . (2015). Sedimentary evolution and persistence of open forests between the south-eastern Alpine fringe and the Northern Dinarides during the Last Glacial Maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 436, 23–40. 10.1016/j.palaeo.2015.06.025 DOI
Muse S. V. (2000). Examining rates and patterns of nucleotide substitution in plants. Plant Mol. Biol. 42, 25–43. 10.1023/A:1006319803002, PMID: PubMed DOI
Nadukkalam Ravindran P., Bentzen P., Bradbury I. R., Beiko R. G. (2018). PMERGE: computational filtering of paralogous sequences from RAD-seq data. Ecol. Evol. 8, 7002–7013. 10.1002/ece3.4219, PMID: PubMed DOI PMC
Niklfeld H. (1972). Der niederösterreichische Alpenostrand – ein Glazialrefugium montaner Pflanzensippen. Jahrb. Verein Schutze Alpenpflanzen-Tiere 37, 42–94.
Ossowski S., Schneeberger K., Lucas-Lledó J. I., Warthmann N., Clark R. M., Shaw R. G., et al. . (2010). The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94. 10.1126/science.1180677, PMID: PubMed DOI PMC
Otto-Bliesner B. L., Russell J. M., Clark P. U., Liu Z. Y., Overpeck J. T., Konecky B., et al. . (2014). Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223–1227. 10.1126/science.1259531, PMID: PubMed DOI
Paris J. R., Stevens J. R., Catchen J. M. (2017). Lost in parameter space: a road map for stacks. Methods Ecol. Evol. 8, 1360–1373. 10.1111/2041-210X.12775 DOI
Pattengale N. D., Alipour M., Bininda-Emonds O. R. P., Moret B. M. E., Stamatakis A. (2010). How many bootstrap replicates are necessary? J. Comput. Biol. 17, 337–354. 10.1089/cmb.2009.0179, PMID: PubMed DOI
Paun O., Schönswetter P., Winkler M., IntraBioDiv Consortium. Tribsch A. (2008). Evolutionary history of the Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol. Ecol. 17, 4263–4275. 10.1111/j.1365-294X.2008.03908.x, PMID: PubMed DOI PMC
Paun O., Turner B., Trucchi E., Munzinger J., Chase M. W., Samuel R. (2016). Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Syst. Biol. 65, 212–227. 10.1093/sysbio/syv076, PMID: PubMed DOI PMC
Petit R. J., Aguinagalde I., De Beaulieu J. L., Bittkau C., Brewer S., Cheddadi R., et al. . (2003). Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300, 1563–1565. 10.1126/science.1083264, PMID: PubMed DOI
Portik D. M., Leaché A. D., Rivera D., Barej M. F., Burger M., Hirschfeld M., et al. . (2017). Evaluating mechanisms of diversification in a Guineo-Congolian tropical forest frog using demographic model selection. Mol. Ecol. 26, 5245–5263. 10.1111/mec.14266, PMID: PubMed DOI
Pritchard J. K., Stephens P., Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959., PMID: PubMed PMC
Raab-Straube E., Hand R., Hörandl E., Nardi E. (2014). “Ranunculaceae” in Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity. Available at: http://ww2.bgbm.org/EuroPlusMed/ (Accessed December 10, 2020).
Rabitsch W., Essl F. (2009). Endemiten: Kostbarkeiten in Österreichs Pflanzen- und Tierwelt. Vienna: Naturwissenschaftlicher Verein für Kärnten und Umweltbundesamt Klagenfurt.
Rambaut A., Drummond A. J., Xie D., Baele G., Suchard M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. 10.1093/sysbio/syy032, PMID: PubMed DOI PMC
Ramirez-Villegas J., Jarvis A. (2010). Downscaling global circulation model outputs: the delta method decision and policy analysis working paper No. 1. International Center for Tropical Agriculture, CIAT, Cali, Colombia.
Randin C. F., Engler R., Normand S., Zappa M., Zimmermann N. E., Pearman P. B., et al. . (2009). Climate change and plant distribution: local models predict high-elevation persistence. Glob. Chang. Biol. 15, 1557–1569. 10.1111/j.1365-2486.2008.01766.x DOI
R-Development-Core-Team (2017). R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Available at: http://www.R-project.org/ (Accessed June 08, 2020).
Rešetnik I., Frajman B., Schönswetter P. (2016). Heteroploid Knautia drymeia includes K. gussonei and cannot be separated into diagnosable subspecies. Amer. J. Bot. 103, 1300–1313. 10.3732/ajb.1500506, PMID: PubMed DOI
Rohlf F. J. (2016). tpsDig, version 2.25. Department of Ecology and Evolution, University of New York at Stony Brook, Stony Brook, New York.
Sanmartín I., Enghoff H., Ronquist F. (2001). Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc. 73, 345–390. 10.1006/bijl.2001.0542 DOI
Schiffner V. (1889). Die Gattung Helleborus. Engler’s Bot. Jahrb. 11, 97–122.
Schneeweiss G. M., Schönswetter P. (2010). The wide but disjunct range of the European mountain plant Androsace lactea L. (Primulaceae) reflects Late Pleistocene range fragmentation and post‐glacial distributional stasis. J. Biogeogr. 37, 2016–2025. 10.1111/j.1365-2699.2010.02350.x DOI
Schönswetter P., Stehlik I., Holderegger R., Tribsch A. (2005). Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 14, 3547–3555. 10.1111/j.1365-294X.2005.02683.x, PMID: PubMed DOI
Schönswetter P., Tribsch A. (2005). Vicariance and dispersal in the alpine perennial, Bupleurum stellatum L. (Apiaceae). Taxon 54, 725–732. 10.2307/25065429 DOI
Schönswetter P., Tribsch A., Barfuss M., Niklfeld H. (2002). Several Pleistocene refugia detected in the high alpine plant Phyteuma globulariifolium in the European Alps. Mol. Ecol. 11, 2637–2647. 10.1046/j.1365-294X.2002.01651.x, PMID: PubMed DOI
Shaw J., Lickey E. B., Beck J. T., Farmer S. B., Liu W., Miller J., et al. . (2005). The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92, 142–166. 10.3732/ajb.92.1.142, PMID: PubMed DOI
Shaw J., Lickey E. B., Schilling E. E., Small R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am. J. Bot. 94, 275–288. 10.3732/ajb.94.3.275, PMID: PubMed DOI
Silvertown J., Charlesworth D. (2009). Introduction to Plant Population Biology. 4th Edn. Chichester: Wiley-Blackwell.
Šingliarová B., Chrtek J., Mráz P. (2008). Loss of genetic diversity in isolated populations of an alpine endemic Pilosella alpicola subsp. ullepitschii: effect of long-term vicariance or long-distance dispersal? Plant Syst. Evol. 275, 181–191. 10.1007/s00606-008-0058-3 DOI
Slovák M., Kucera J., Turis P., Zozomová-Lihová J. (2012). Multiple glacial refugia and postglacial colonization routes inferred for a woodland geophyte, Cyclamen purpurascens: patterns concordant with the Pleistocene history of broadleaved and coniferous tree species. Biol. J. Linn. Soc. 105, 741–760. 10.1111/j.1095-8312.2011.01826.x DOI
Stace C. A. (1995). IOPB chromosome data 9. Newslett. Int. Organ. Pl. Biosyst. 24, 10–23.
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. 10.1093/bioinformatics/btu033, PMID: PubMed DOI PMC
Stehlik I., Blattner F., Holderegger R., Bachmann K. (2002a). Nunatak survival of the high Alpine plant Eritrichium nanum (L.) Gaudin in the Central Alps during the ice ages. Mol. Ecol. 11, 2027–2036. 10.1046/j.1365-294x.2002.01595.x, PMID: PubMed DOI
Stehlik I., Schneller J. J., Bachmann K. (2002b). Immigration and in situ glacial survival of the low-alpine Erinus alpinus (Scrophulariaceae). Biol. J. Linn. Soc. 77, 87–103. 10.1046/j.1095-8312.2002.00094.x DOI
Sun H., McLewin W., Fay M. F. (2001). Molecular phylogeny of Helleborus (Ranunculaceae), with an emphasis on the East Asian-Mediterranean disjunction. Taxon 50, 1001–1018. 10.2307/1224717 DOI
Svenning J.-C., Skov F. (2004). Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573. 10.1111/j.1461-0248.2004.00614.x DOI
Svenning J.-C., Skov F. (2007). Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460. 10.1111/j.1461-0248.2007.01038.x, PMID: PubMed DOI
Taberlet P., Fumagalli L., Wust-Saucy A. G., Cosson J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464. 10.1046/j.1365-294x.1998.00289.x, PMID: PubMed DOI
Tabor K., Williams J. W. (2010). Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol. Appl. 20, 554–565. 10.1890/09-0173.1, PMID: PubMed DOI
Temsch E. M., Temsch W., Ehrendorfer-Schratt L., Greilhuber J. (2010). Heavy metal pollution, selection, and genome size: the species of the Žerjav study revisited with flow cytometry. J. Bot. 2010, 1–11. 10.1155/2010/596542 DOI
Thompson J. D. (1999). Population differentiation in Mediterranean plants: insights into colonization history and the evolution and conservation of endemic species. Heredity 82, 229–236. 10.1038/sj.hdy.6885040, PMID: PubMed DOI
Tóth E. G., Köbölkuti Z. A., Pedryc A., Höhn M. (2017). Evolutionary history and phylogeography of Scots pine (Pinus sylvestris L.) in Europe based on molecular markers. J. For. Res. 28, 637–651. 10.1007/s11676-017-0393-8 DOI
Tribsch A. (2004). Areas of endemism of vascular plants in the Eastern Alps in relation to Pleistocene glaciation. J. Biogeogr. 31, 747–760. 10.1111/j.1365-2699.2004.01065.x DOI
Tribsch A., Schönswetter P. (2003). Patterns of endemism and comparative phylogeography confirm palaeoenvironmental evidence for Pleistocene refugia in the Eastern Alps. Taxon 52, 477–497. 10.2307/3647447 DOI
Urbaniak J., Kwiatkowski P., Ronikier M. (2018). Postglacial history and current population genetic diversity of a central-European forest plant Hacquetia epipactis. Preslia 90, 39–57. 10.23855/preslia.2018.039 DOI
van der Knaap W. O., van Leeuwen J. F. N., Finsinger W., Gobet E., Pini R., Schweizer A., et al. . (2005). Migration and population expansion of Abies, Fagus, Picea, and Quercus since 15000 years in and across the Alps, based on pollen-percentage threshold values. Quat. Sci. Rev. 24, 645–680. 10.1016/j.quascirev.2004.06.013 DOI
van Husen D. (1987). Die Ostalpen in den Eiszeiten. Wien: Geologische Bundesanstalt.
Venables W. N., Ripley B. D. (2002). Modern Applied Statistics with S. 4th Edn. New York: Springer.
Willis K. J., van Andel T. H. (2004). Trees or no trees? The environments of central and eastern Europe during the last glaciation. Quat. Sci. Rev. 23, 2369–2387. 10.1016/j.quascirev.2004.06.002 DOI
Willner W., Di Pietro R., Bergmeier E. (2009). Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography 32, 1011–1018. 10.1111/j.1600-0587.2009.05957.x DOI
Willner W., Grabherr G. (2007). Die Wälder und Gebüsche Österreichs. Heidelberg: Spektrum Akademischer Verlag.
Willyard A., Syring J., Gernandt D. S., Liston A., Cronn R. (2007). Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Mol. Biol. Evol. 24, 90–101. 10.1093/molbev/msl131, PMID: PubMed DOI
Winkler M., Tribsch A., Paun O., Englisch T., IntraBioDiv-Consortium. Schönswetter P. (2010). Evolutionary history of Hornungia alpina (Brassicaceae) in the Alps: phylogeography, breeding system, taxonomy. Mol. Phylogenet. Evol. 54, 571–582. 10.1016/j.ympev.2009.08.009, PMID: PubMed DOI
Wolfe K. H., Li W. H., Sharp P. M. (1987). Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. U. S. A. 84, 9054–9058. 10.1073/pnas.84.24.9054, PMID: PubMed DOI PMC
Yoder A. D., Campbell C. R., Blanco M. B., dos Reis M., Ganzhorn J. U., Goodman S. M., et al. . (2016). Geogenetic patterns in mouse lemurs (genus Microcebus) reveal the ghosts of Madagascar’s forests past. Proc. Natl. Acad. Sci. U. S. A. 113, 8049–8056. 10.1073/pnas.1601081113, PMID: PubMed DOI PMC
Zasadni J., Klapyta P. (2014). The Tatra Mountains during the Last Glacial Maximum. J. Maps 10, 440–456. 10.1080/17445647.2014.885854 DOI
Zimmermann N. E., Yoccoz N. G., Edwards T. C., Meier E. S., Thuiller W., Guisan A., et al. . (2009). Climatic extremes improve predictions of spatial patterns of tree species. Proc. Natl. Acad. Sci. U. S. A. 106, 19723–19728. 10.1073/pnas.0901643106, PMID: PubMed DOI PMC
Zonneveld B. J. M. (2001). Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Pl. Syst. Evol. 229, 125–130. 10.1007/s006060170022 DOI