Assessment of the start-up process of anaerobic digestion utilizing swine manure: 13C fractionation of biogas and microbial dynamics

. 2019 May ; 26 (13) : 13275-13285. [epub] 20190321

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30895553

Grantová podpora
51708264 National Natural Science Foundation of China

Odkazy

PubMed 30895553
DOI 10.1007/s11356-019-04703-3
PII: 10.1007/s11356-019-04703-3
Knihovny.cz E-zdroje

The aim of this study was to investigate how the microbial community structure adapts during the start-up phase and how the 13C fractionation of biogas reflects the microbial population dynamics in two parallel swine manure-fed anaerobic digesters. Two swine manure-fed reactors for the start-up of continuously stirred tank reactors at mesophilic condition were evaluated. Changes in community structure were monitored using 16S rRNA high-throughput sequencing to measure the abundance of fermenting bacteria and methanogens. Digesters with relatively stable Methanosarcinaceae started up successfully and contained high gas production and low levels of propionate. In contrast, the digester that experienced a difficult start-up period had reduced Methanosarcinaceae along with accumulated propionate and low gas production. Specific gas production, specific methane production, and 13C fractionation of biogas were influenced significantly by Methanosarcinaceae, Methanobacteriaceae, and Clostridiaceae, indicating that the 13C fractionation of biogas had significant potential to reflect microbial population changes and digester performance during the start-up period.

Zobrazit více v PubMed

Bioresour Technol. 2018 Feb;250:683-690 PubMed

Bioresour Technol. 2018 Dec;270:328-336 PubMed

Bioresour Technol. 2011 Feb;102(4):3730-9 PubMed

Water Sci Technol. 2002;46(4-5):215-21 PubMed

Bioresour Technol. 2018 Jan;247:999-1014 PubMed

Waste Manag. 2016 Feb;48:227-235 PubMed

PLoS One. 2014 Apr 02;9(4):e93710 PubMed

Appl Microbiol Biotechnol. 2013 Mar;97(5):2251-62 PubMed

ISME J. 2014 Oct;8(10):2015-28 PubMed

Anaerobe. 2014 Oct;29:91-9 PubMed

Curr Opin Biotechnol. 2007 Jun;18(3):273-8 PubMed

Bioresour Technol. 2017 Aug;238:57-69 PubMed

Int J Syst Evol Microbiol. 2002 May;52(Pt 3):921-925 PubMed

Water Res. 2006 Aug;40(14):2621-8 PubMed

Int J Microbiol. 2017;2017:5291283 PubMed

Biotechnol Bioeng. 1998 Feb 5;57(3):342-55 PubMed

Water Res. 2007 Apr;41(7):1554-68 PubMed

Bioresour Technol. 2015 Dec;198:372-9 PubMed

Waste Manag. 2019 Feb 1;84:211-219 PubMed

Environ Sci Technol. 2010 Jul 1;44(13):5067-73 PubMed

Bioresour Technol. 2003 Jan;86(2):123-9 PubMed

Front Microbiol. 2017 Sep 28;8:1881 PubMed

Sci Total Environ. 2017 Dec 15;603-604:219-225 PubMed

Nat Rev Microbiol. 2014 Dec;12(12):809-21 PubMed

Sci Total Environ. 2018 May 1;622-623:459-466 PubMed

Biotechnol Bioeng. 2004 Sep 30;87(7):823-34 PubMed

Bioresour Technol. 2004 Jul;93(3):227-32 PubMed

Appl Microbiol Biotechnol. 2019 Jan;103(1):519-533 PubMed

ISME J. 2016 Oct;10(10):2405-18 PubMed

Appl Microbiol Biotechnol. 2016 Jan;100(1):479-91 PubMed

Bioresour Technol. 2008 Jul;99(10):4044-64 PubMed

Water Sci Technol. 2003;48(4):1-8 PubMed

Bioresour Technol. 2014 Sep;167:251-9 PubMed

Environ Sci Technol. 2018 Jun 5;52(11):6704-6713 PubMed

Waste Manag. 2014 May;34(5):875-85 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...