Assessment of the start-up process of anaerobic digestion utilizing swine manure: 13C fractionation of biogas and microbial dynamics
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
51708264
National Natural Science Foundation of China
PubMed
30895553
DOI
10.1007/s11356-019-04703-3
PII: 10.1007/s11356-019-04703-3
Knihovny.cz E-zdroje
- Klíčová slova
- 13C fractionation of biogas, Anaerobic digestion, Methanogenesis, Microbial community, Swine manure,
- MeSH
- anaerobióza MeSH
- Bacteria MeSH
- biopaliva MeSH
- bioreaktory mikrobiologie MeSH
- chemická frakcionace MeSH
- fermentace MeSH
- hnůj mikrobiologie MeSH
- prasata MeSH
- RNA ribozomální 16S genetika MeSH
- uhlík chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biopaliva MeSH
- hnůj MeSH
- RNA ribozomální 16S MeSH
- uhlík MeSH
The aim of this study was to investigate how the microbial community structure adapts during the start-up phase and how the 13C fractionation of biogas reflects the microbial population dynamics in two parallel swine manure-fed anaerobic digesters. Two swine manure-fed reactors for the start-up of continuously stirred tank reactors at mesophilic condition were evaluated. Changes in community structure were monitored using 16S rRNA high-throughput sequencing to measure the abundance of fermenting bacteria and methanogens. Digesters with relatively stable Methanosarcinaceae started up successfully and contained high gas production and low levels of propionate. In contrast, the digester that experienced a difficult start-up period had reduced Methanosarcinaceae along with accumulated propionate and low gas production. Specific gas production, specific methane production, and 13C fractionation of biogas were influenced significantly by Methanosarcinaceae, Methanobacteriaceae, and Clostridiaceae, indicating that the 13C fractionation of biogas had significant potential to reflect microbial population changes and digester performance during the start-up period.
Zobrazit více v PubMed
Bioresour Technol. 2018 Feb;250:683-690 PubMed
Bioresour Technol. 2018 Dec;270:328-336 PubMed
Bioresour Technol. 2011 Feb;102(4):3730-9 PubMed
Water Sci Technol. 2002;46(4-5):215-21 PubMed
Bioresour Technol. 2018 Jan;247:999-1014 PubMed
Waste Manag. 2016 Feb;48:227-235 PubMed
PLoS One. 2014 Apr 02;9(4):e93710 PubMed
Appl Microbiol Biotechnol. 2013 Mar;97(5):2251-62 PubMed
ISME J. 2014 Oct;8(10):2015-28 PubMed
Anaerobe. 2014 Oct;29:91-9 PubMed
Curr Opin Biotechnol. 2007 Jun;18(3):273-8 PubMed
Bioresour Technol. 2017 Aug;238:57-69 PubMed
Int J Syst Evol Microbiol. 2002 May;52(Pt 3):921-925 PubMed
Water Res. 2006 Aug;40(14):2621-8 PubMed
Int J Microbiol. 2017;2017:5291283 PubMed
Biotechnol Bioeng. 1998 Feb 5;57(3):342-55 PubMed
Water Res. 2007 Apr;41(7):1554-68 PubMed
Bioresour Technol. 2015 Dec;198:372-9 PubMed
Waste Manag. 2019 Feb 1;84:211-219 PubMed
Environ Sci Technol. 2010 Jul 1;44(13):5067-73 PubMed
Bioresour Technol. 2003 Jan;86(2):123-9 PubMed
Front Microbiol. 2017 Sep 28;8:1881 PubMed
Sci Total Environ. 2017 Dec 15;603-604:219-225 PubMed
Nat Rev Microbiol. 2014 Dec;12(12):809-21 PubMed
Sci Total Environ. 2018 May 1;622-623:459-466 PubMed
Biotechnol Bioeng. 2004 Sep 30;87(7):823-34 PubMed
Bioresour Technol. 2004 Jul;93(3):227-32 PubMed
Appl Microbiol Biotechnol. 2019 Jan;103(1):519-533 PubMed
ISME J. 2016 Oct;10(10):2405-18 PubMed
Appl Microbiol Biotechnol. 2016 Jan;100(1):479-91 PubMed
Bioresour Technol. 2008 Jul;99(10):4044-64 PubMed
Water Sci Technol. 2003;48(4):1-8 PubMed
Bioresour Technol. 2014 Sep;167:251-9 PubMed
Environ Sci Technol. 2018 Jun 5;52(11):6704-6713 PubMed
Waste Manag. 2014 May;34(5):875-85 PubMed