-
Je něco špatně v tomto záznamu ?
Motion Assessment for Accelerometric and Heart Rate Cycling Data Analysis
H. Charvátová, A. Procházka, O. Vyšata,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2001
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
32164235
DOI
10.3390/s20051523
Knihovny.cz E-zdroje
- MeSH
- akcelerometrie metody MeSH
- algoritmy MeSH
- Bayesova věta MeSH
- cvičení MeSH
- cyklistika * MeSH
- fitness náramky * MeSH
- lidé MeSH
- mobilní telefon přístrojové vybavení MeSH
- neuronové sítě (počítačové) MeSH
- počítačové zpracování signálu MeSH
- pohyb těles MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované MeSH
- software MeSH
- srdeční frekvence * MeSH
- statistické modely MeSH
- support vector machine MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Motion analysis is an important topic in the monitoring of physical activities and recognition of neurological disorders. The present paper is devoted to motion assessment using accelerometers inside mobile phones located at selected body positions and the records of changes in the heart rate during cycling, under different body loads. Acquired data include 1293 signal segments recorded by the mobile phone and the Garmin device for uphill and downhill cycling. The proposed method is based upon digital processing of the heart rate and the mean power in different frequency bands of accelerometric data. The classification of the resulting features was performed by the support vector machine, Bayesian methods, k-nearest neighbor method, and neural networks. The proposed criterion is then used to find the best positions for the sensors with the highest discrimination abilities. The results suggest the sensors be positioned on the spine for the classification of uphill and downhill cycling, yielding an accuracy of 96.5% and a cross-validation error of 0.04 evaluated by a two-layer neural network system for features based on the mean power in the frequency bands 〈 3 , 8 〉 and 〈 8 , 15 〉 Hz. This paper shows the possibility of increasing this accuracy to 98.3% by the use of more features and the influence of appropriate sensor positioning for motion monitoring and classification.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028392
- 003
- CZ-PrNML
- 005
- 20210114153727.0
- 007
- ta
- 008
- 210105s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/s20051523 $2 doi
- 035 __
- $a (PubMed)32164235
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Charvátová, Hana $u Faculty of Applied Informatics, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic.
- 245 10
- $a Motion Assessment for Accelerometric and Heart Rate Cycling Data Analysis / $c H. Charvátová, A. Procházka, O. Vyšata,
- 520 9_
- $a Motion analysis is an important topic in the monitoring of physical activities and recognition of neurological disorders. The present paper is devoted to motion assessment using accelerometers inside mobile phones located at selected body positions and the records of changes in the heart rate during cycling, under different body loads. Acquired data include 1293 signal segments recorded by the mobile phone and the Garmin device for uphill and downhill cycling. The proposed method is based upon digital processing of the heart rate and the mean power in different frequency bands of accelerometric data. The classification of the resulting features was performed by the support vector machine, Bayesian methods, k-nearest neighbor method, and neural networks. The proposed criterion is then used to find the best positions for the sensors with the highest discrimination abilities. The results suggest the sensors be positioned on the spine for the classification of uphill and downhill cycling, yielding an accuracy of 96.5% and a cross-validation error of 0.04 evaluated by a two-layer neural network system for features based on the mean power in the frequency bands 〈 3 , 8 〉 and 〈 8 , 15 〉 Hz. This paper shows the possibility of increasing this accuracy to 98.3% by the use of more features and the influence of appropriate sensor positioning for motion monitoring and classification.
- 650 _2
- $a akcelerometrie $x metody $7 D061725
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a Bayesova věta $7 D001499
- 650 12
- $a cyklistika $7 D001642
- 650 _2
- $a mobilní telefon $x přístrojové vybavení $7 D040421
- 650 _2
- $a cvičení $7 D015444
- 650 12
- $a fitness náramky $7 D000072936
- 650 12
- $a srdeční frekvence $7 D006339
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a pohyb těles $7 D009038
- 650 _2
- $a neuronové sítě (počítačové) $7 D016571
- 650 _2
- $a rozpoznávání automatizované $7 D010363
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a software $7 D012984
- 650 _2
- $a support vector machine $7 D060388
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Procházka, Aleš $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Prague 6, Czech Republic. Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague 6, Czech Republic. Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic.
- 700 1_
- $a Vyšata, Oldřich $u Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic.
- 773 0_
- $w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 20, č. 5 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32164235 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114153724 $b ABA008
- 999 __
- $a ok $b bmc $g 1608727 $s 1119572
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 20 $c 5 $e 20200310 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
- LZP __
- $a Pubmed-20210105