• Je něco špatně v tomto záznamu ?

Motion Assessment for Accelerometric and Heart Rate Cycling Data Analysis

H. Charvátová, A. Procházka, O. Vyšata,

. 2020 ; 20 (5) : . [pub] 20200310

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028392

Motion analysis is an important topic in the monitoring of physical activities and recognition of neurological disorders. The present paper is devoted to motion assessment using accelerometers inside mobile phones located at selected body positions and the records of changes in the heart rate during cycling, under different body loads. Acquired data include 1293 signal segments recorded by the mobile phone and the Garmin device for uphill and downhill cycling. The proposed method is based upon digital processing of the heart rate and the mean power in different frequency bands of accelerometric data. The classification of the resulting features was performed by the support vector machine, Bayesian methods, k-nearest neighbor method, and neural networks. The proposed criterion is then used to find the best positions for the sensors with the highest discrimination abilities. The results suggest the sensors be positioned on the spine for the classification of uphill and downhill cycling, yielding an accuracy of 96.5% and a cross-validation error of 0.04 evaluated by a two-layer neural network system for features based on the mean power in the frequency bands 〈 3 , 8 〉 and 〈 8 , 15 〉 Hz. This paper shows the possibility of increasing this accuracy to 98.3% by the use of more features and the influence of appropriate sensor positioning for motion monitoring and classification.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028392
003      
CZ-PrNML
005      
20210114153727.0
007      
ta
008      
210105s2020 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/s20051523 $2 doi
035    __
$a (PubMed)32164235
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Charvátová, Hana $u Faculty of Applied Informatics, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic.
245    10
$a Motion Assessment for Accelerometric and Heart Rate Cycling Data Analysis / $c H. Charvátová, A. Procházka, O. Vyšata,
520    9_
$a Motion analysis is an important topic in the monitoring of physical activities and recognition of neurological disorders. The present paper is devoted to motion assessment using accelerometers inside mobile phones located at selected body positions and the records of changes in the heart rate during cycling, under different body loads. Acquired data include 1293 signal segments recorded by the mobile phone and the Garmin device for uphill and downhill cycling. The proposed method is based upon digital processing of the heart rate and the mean power in different frequency bands of accelerometric data. The classification of the resulting features was performed by the support vector machine, Bayesian methods, k-nearest neighbor method, and neural networks. The proposed criterion is then used to find the best positions for the sensors with the highest discrimination abilities. The results suggest the sensors be positioned on the spine for the classification of uphill and downhill cycling, yielding an accuracy of 96.5% and a cross-validation error of 0.04 evaluated by a two-layer neural network system for features based on the mean power in the frequency bands 〈 3 , 8 〉 and 〈 8 , 15 〉 Hz. This paper shows the possibility of increasing this accuracy to 98.3% by the use of more features and the influence of appropriate sensor positioning for motion monitoring and classification.
650    _2
$a akcelerometrie $x metody $7 D061725
650    _2
$a algoritmy $7 D000465
650    _2
$a Bayesova věta $7 D001499
650    12
$a cyklistika $7 D001642
650    _2
$a mobilní telefon $x přístrojové vybavení $7 D040421
650    _2
$a cvičení $7 D015444
650    12
$a fitness náramky $7 D000072936
650    12
$a srdeční frekvence $7 D006339
650    _2
$a lidé $7 D006801
650    _2
$a statistické modely $7 D015233
650    _2
$a pohyb těles $7 D009038
650    _2
$a neuronové sítě (počítačové) $7 D016571
650    _2
$a rozpoznávání automatizované $7 D010363
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a počítačové zpracování signálu $7 D012815
650    _2
$a software $7 D012984
650    _2
$a support vector machine $7 D060388
655    _2
$a časopisecké články $7 D016428
700    1_
$a Procházka, Aleš $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Prague 6, Czech Republic. Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague 6, Czech Republic. Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic.
700    1_
$a Vyšata, Oldřich $u Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic.
773    0_
$w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 20, č. 5 (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32164235 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114153724 $b ABA008
999    __
$a ok $b bmc $g 1608727 $s 1119572
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 20 $c 5 $e 20200310 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...