Complex formation of APP with GABAB receptors links axonal trafficking to amyloidogenic processing
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30902970
PubMed Central
PMC6430795
DOI
10.1038/s41467-019-09164-3
PII: 10.1038/s41467-019-09164-3
Knihovny.cz E-zdroje
- MeSH
- amyloid metabolismus MeSH
- amyloidní beta-protein chemie metabolismus MeSH
- axonální transport * MeSH
- axony metabolismus MeSH
- buněčná membrána metabolismus MeSH
- dendrity metabolismus MeSH
- epitopy metabolismus MeSH
- HEK293 buňky MeSH
- kineziny metabolismus MeSH
- lidé MeSH
- molekuly buněčné adheze chemie metabolismus MeSH
- myši inbrední C57BL MeSH
- proteiny nervové tkáně chemie metabolismus MeSH
- proteiny vázající GTP metabolismus MeSH
- proteomika MeSH
- receptory GABA-B metabolismus MeSH
- sekvence aminokyselin MeSH
- signální transdukce MeSH
- stabilita proteinů MeSH
- synapse metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amyloid MeSH
- amyloidní beta-protein MeSH
- epitopy MeSH
- kineziny MeSH
- molekuly buněčné adheze MeSH
- proteiny nervové tkáně MeSH
- proteiny vázající GTP MeSH
- receptory GABA-B MeSH
GABAB receptors (GBRs) are key regulators of synaptic release but little is known about trafficking mechanisms that control their presynaptic abundance. We now show that sequence-related epitopes in APP, AJAP-1 and PIANP bind with nanomolar affinities to the N-terminal sushi-domain of presynaptic GBRs. Of the three interacting proteins, selectively the genetic loss of APP impaired GBR-mediated presynaptic inhibition and axonal GBR expression. Proteomic and functional analyses revealed that APP associates with JIP and calsyntenin proteins that link the APP/GBR complex in cargo vesicles to the axonal trafficking motor. Complex formation with GBRs stabilizes APP at the cell surface and reduces proteolysis of APP to Aβ, a component of senile plaques in Alzheimer's disease patients. Thus, APP/GBR complex formation links presynaptic GBR trafficking to Aβ formation. Our findings support that dysfunctional axonal trafficking and reduced GBR expression in Alzheimer's disease increases Aβ formation.
Zobrazit více v PubMed
Gassmann M, Bettler B. Regulation of neuronal GABAB receptor functions by subunit composition. Nat. Rev. Neurosci. 2012;13:380–394. doi: 10.1038/nrn3249. PubMed DOI
Frangaj A, Fan QR. Structural biology of GABAB receptor. Neuropharmacology. 2018;136:68–79. doi: 10.1016/j.neuropharm.2017.10.011. PubMed DOI PMC
Guetg N, et al. NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1. Proc. Natl Acad. Sci. USA. 2010;107:13924–13929. doi: 10.1073/pnas.1000909107. PubMed DOI PMC
Terunuma M, et al. Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors. Proc. Natl Acad. Sci. USA. 2010;107:13918–13923. doi: 10.1073/pnas.1000853107. PubMed DOI PMC
Orts-Del’Immagine A, Pugh JR. Activity-dependent plasticity of presynaptic GABAB receptors at parallel fiber synapses. Synapse. 2018;72:e22027. doi: 10.1002/syn.22027. PubMed DOI PMC
Chu DC, Penney JB, Jr., Young AB. Cortical GABAB and GABAA receptors in Alzheimer’s disease: a quantitative autoradiographic study. Neurology. 1987;37:1454–1459. doi: 10.1212/WNL.37.9.1454. PubMed DOI
Iwakiri M, et al. Changes in hippocampal GABABR1 subunit expression in Alzheimer’s patients: association with Braak staging. Acta Neuropathol. 2005;109:467–474. doi: 10.1007/s00401-005-0985-9. PubMed DOI
Kang JY, et al. Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome. J. Biol. Chem. 2017;292:6621–6632. doi: 10.1074/jbc.M116.772541. PubMed DOI PMC
Thompson SE, Ayman G, Woodhall GL, Jones RS. Depression of glutamate and GABA release by presynaptic GABAB receptors in the entorhinal cortex in normal and chronically epileptic rats. Neurosignals. 2006;15:202–215. doi: 10.1159/000098515. PubMed DOI PMC
Borgkvist A, et al. Loss of striatonigral GABAergic presynaptic inhibition enables motor sensitization in parkinsonian mice. Neuron. 2015;87:976–988. doi: 10.1016/j.neuron.2015.08.022. PubMed DOI PMC
Hannan S, Wilkins ME, Smart TG. Sushi domains confer distinct trafficking profiles on GABAB receptors. Proc. Natl Acad. Sci. USA. 2012;109:12171–12176. doi: 10.1073/pnas.1201660109. PubMed DOI PMC
Vigot R, et al. Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron. 2006;50:589–601. doi: 10.1016/j.neuron.2006.04.014. PubMed DOI PMC
Biermann B, et al. The sushi domains of GABAB receptors function as axonal targeting signals. J. Neurosci. 2010;30:1385–1394. doi: 10.1523/JNEUROSCI.3172-09.2010. PubMed DOI PMC
Hannan S, Gerrow K, Triller A, Smart TG. Phospho-dependent accumulation of GABABRs at presynaptic terminals after NMDAR activation. Cell Rep. 2016;16:1962–1973. doi: 10.1016/j.celrep.2016.07.021. PubMed DOI PMC
Schwenk J, et al. Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nat. Neurosci. 2016;19:233–242. doi: 10.1038/nn.4198. PubMed DOI
Valdes V, et al. Endoplasmic reticulum sorting and kinesin-1 command the targeting of axonal GABAB receptors. PLoS One. 2012;7:e44168. doi: 10.1371/journal.pone.0044168. PubMed DOI PMC
Muller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci. 2017;18:281–298. doi: 10.1038/nrn.2017.29. PubMed DOI
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016;8:595–608. doi: 10.15252/emmm.201606210. PubMed DOI PMC
Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204–1222. doi: 10.1016/j.cell.2012.02.040. PubMed DOI PMC
Yamada S, Nelson WJ. Synapses: sites of cell recognition, adhesion, and functional specification. Annu. Rev. Biochem. 2007;76:267–294. doi: 10.1146/annurev.biochem.75.103004.142811. PubMed DOI PMC
Evdokimov K, et al. Leda-1/Pianp is targeted to the basolateral plasma membrane by a distinct intracellular juxtamembrane region and modulates barrier properties and E-Cadherin processing. Biochem. Biophys. Res. Commun. 2016;475:342–349. doi: 10.1016/j.bbrc.2016.05.092. PubMed DOI
Eggert S, Thomas C, Kins S, Hermey G. Trafficking in Alzheimer’s Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol. Neurobiol. 2018;55:5809–5829. doi: 10.1007/s12035-017-0806-x. PubMed DOI
Pettem KL, et al. The specific α-neurexin interactor calsyntenin-3 promotes excitatory and inhibitory synapse development. Neuron. 2013;80:113–128. doi: 10.1016/j.neuron.2013.07.016. PubMed DOI PMC
Turecek R, et al. Auxiliary GABAB receptor subunits uncouple G protein βγ subunits from effector channels to induce desensitization. Neuron. 2014;82:1032–1044. doi: 10.1016/j.neuron.2014.04.015. PubMed DOI
Pasciuto E, et al. Dysregulated ADAM10-mediated processing of APP during a critical time window leads to synaptic deficits in Fragile X syndrome. Neuron. 2015;87:382–398. doi: 10.1016/j.neuron.2015.06.032. PubMed DOI
Fogel H, et al. APP homodimers transduce an amyloid-β-mediated increase in release probability at excitatory synapses. Cell Rep. 2014;7:1560–1576. doi: 10.1016/j.celrep.2014.04.024. PubMed DOI
Das U, et al. Visualizing APP and BACE-1 approximation in neurons yields insight into the amyloidogenic pathway. Nat. Neurosci. 2016;19:55–64. doi: 10.1038/nn.4188. PubMed DOI PMC
Fu MM, Holzbaur EL. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 2013;202:495–508. doi: 10.1083/jcb.201302078. PubMed DOI PMC
Das U, et al. Activity-induced convergence of APP and BACE-1 in acidic microdomains via an endocytosis-dependent pathway. Neuron. 2013;79:447–460. doi: 10.1016/j.neuron.2013.05.035. PubMed DOI PMC
Chiba K, et al. Quantitative analysis of APP axonal transport in neurons: role of JIP1 in enhanced APP anterograde transport. Mol. Biol. Cell. 2014;25:3569–3580. doi: 10.1091/mbc.e14-06-1111. PubMed DOI PMC
Norstrom EM, Zhang C, Tanzi R, Sisodia SS. Identification of NEEP21 as a β-amyloid precursor protein-interacting protein in vivo that modulates amyloidogenic processing in vitro. J. Neurosci. 2010;30:15677–15685. doi: 10.1523/JNEUROSCI.4464-10.2010. PubMed DOI PMC
Bai Y, et al. The in vivo brain interactome of the amyloid precursor protein. Mol. Cell Proteom. 2008;7:15–34. doi: 10.1074/mcp.M700077-MCP200. PubMed DOI
Muller U, Kins S. APP on the move. Trends Mol. Med. 2002;8:152–155. doi: 10.1016/S1471-4914(02)02320-1. PubMed DOI
Blein S, et al. Structural analysis of the complement control protein (CCP) modules of GABAB receptor 1a: only one of the two CCP modules is compactly folded. J. Biol. Chem. 2004;279:48292–48306. doi: 10.1074/jbc.M406540200. PubMed DOI
Coburger I, et al. Analysis of the overall structure of the multi-domain amyloid precursor protein (APP) PLoS One. 2013;8:e81926. doi: 10.1371/journal.pone.0081926. PubMed DOI PMC
Yamazaki T, Selkoe DJ, Koo EH. Trafficking of cell surface β-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons. J. Cell Biol. 1995;129:431–442. doi: 10.1083/jcb.129.2.431. PubMed DOI PMC
Simons M, et al. Intracellular routing of human amyloid protein precursor: axonal delivery followed by transport to the dendrites. J. Neurosci. Res. 1995;41:121–128. doi: 10.1002/jnr.490410114. PubMed DOI
Ring S, et al. The secreted β-amyloid precursor protein ectodomain APPs α is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J. Neurosci. 2007;27:7817–7826. doi: 10.1523/JNEUROSCI.1026-07.2007. PubMed DOI PMC
Craig MT, Mayne EW, Bettler B, Paulsen O, McBain CJ. Distinct roles of GABAB1a- and GABAB1b-containing GABAB receptors in spontaneous and evoked termination of persistent cortical activity. J. Physiol. 2013;591:835–843. doi: 10.1113/jphysiol.2012.248088. PubMed DOI PMC
Huo Q, et al. Prefrontal cortical GABAergic dysfunction contributes to aberrant UP-state duration in APP knockout mice. Cereb. Cortex. 2017;27:4060–4072. PubMed
Lage K, et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat. Biotechnol. 2007;25:309–316. doi: 10.1038/nbt1295. PubMed DOI
Chen M, et al. APP modulates KCC2 expression and function in hippocampal GABAergic inhibition. eLife. 2017;6:e20142. doi: 10.7554/eLife.20142. PubMed DOI PMC
Wright R, et al. Neuronal chloride regulation via KCC2 is modulated through a GABAB receptor protein complex. J. Neurosci. 2017;37:5447–5462. doi: 10.1523/JNEUROSCI.2164-16.2017. PubMed DOI PMC
Buggia-Prevot V, et al. A function for EHD family proteins in unidirectional retrograde dendritic transport of BACE1 and Alzheimer’s disease Aβ production. Cell Rep. 2013;5:1552–1563. doi: 10.1016/j.celrep.2013.12.006. PubMed DOI PMC
Kins S, Lauther N, Szodorai A, Beyreuther K. Subcellular trafficking of the amyloid precursor protein gene family and its pathogenic role in Alzheimer’s disease. Neurodegener. Dis. 2006;3:218–226. doi: 10.1159/000095259. PubMed DOI
DeBoer SR, Dolios G, Wang R, Sisodia SS. Differential release of β-amyloid from dendrite- versus axon-targeted APP. J. Neurosci. 2014;34:12313–12327. doi: 10.1523/JNEUROSCI.2255-14.2014. PubMed DOI PMC
Vassar R, et al. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286:735–741. doi: 10.1126/science.286.5440.735. PubMed DOI
Park M, et al. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron. 2006;52:817–830. doi: 10.1016/j.neuron.2006.09.040. PubMed DOI PMC
Puthiyedth N, Riveros C, Berretta R, Moscato P. Identification of differentially expressed genes through integrated study of Alzheimer’s disease affected brain regions. PLoS ONE. 2016;11:e0152342. doi: 10.1371/journal.pone.0152342. PubMed DOI PMC
Jo S, et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med. 2014;20:886–896. doi: 10.1038/nm.3639. PubMed DOI PMC
Benke D. Mechanisms of GABAB receptor exocytosis, endocytosis, and degradation. Adv. Pharmacol. 2010;58:93–111. doi: 10.1016/S1054-3589(10)58004-9. PubMed DOI
Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 2008;283:29615–29619. doi: 10.1074/jbc.R800019200. PubMed DOI PMC
Amatniek JC, et al. Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia. 2006;47:867–872. doi: 10.1111/j.1528-1167.2006.00554.x. PubMed DOI
Ito K, et al. Memantine reduces the production of amyloid-β peptides through modulation of amyloid precursor protein trafficking. Eur. J. Pharmacol. 2017;798:16–25. doi: 10.1016/j.ejphar.2017.02.001. PubMed DOI
Froestl W, et al. SGS742: the first GABAB receptor antagonist in clinical trials. Biochem. Pharmacol. 2004;68:1479–1487. doi: 10.1016/j.bcp.2004.07.030. PubMed DOI
Fairfax BP, et al. Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability. J. Biol. Chem. 2004;279:12565–12573. doi: 10.1074/jbc.M311389200. PubMed DOI
Pagano A, et al. C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABAB receptors. J. Neurosci. 2001;21:1189–1202. doi: 10.1523/JNEUROSCI.21-04-01189.2001. PubMed DOI PMC
Gassmann M, et al. Redistribution of GABAB1 protein and atypical GABAB responses in GABAB2-deficient mice. J. Neurosci. 2004;24:6086–6097. doi: 10.1523/JNEUROSCI.5635-03.2004. PubMed DOI PMC
Lorenzo A, et al. Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat. Neurosci. 2000;3:460–464. doi: 10.1038/74833. PubMed DOI
Skarnes WC, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474:337–342. doi: 10.1038/nature10163. PubMed DOI PMC
Brechet A, et al. AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability. Nat. Commun. 2017;8:15910. doi: 10.1038/ncomms15910. PubMed DOI PMC
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Bildl W, et al. Extending the dynamic range of label-free mass spectrometric quantification of affinity purifications. Mol. Cell Proteom. 2012;11:M111–007955. doi: 10.1074/mcp.M111.007955. PubMed DOI PMC
Gronenborn AM, et al. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science. 1991;253:657–661. doi: 10.1126/science.1871600. PubMed DOI
Rule, G. S. & Hitchens, T. K. Fundamentals of protein NMR spectroscopy. (Springer, Dordrecht, The Netherlands 2006).
Kaech S, Banker G. Culturing hippocampal neurons. Nat. Protoc. 2006;1:2406–2415. doi: 10.1038/nprot.2006.356. PubMed DOI
The role of GABAB receptors in the subcortical pathways of the mammalian auditory system