Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression

. 2019 Aug ; 75 (3) : 253-262. [epub] 20190325

Jazyk angličtina Země Španělsko Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30912009
Odkazy

PubMed 30912009
DOI 10.1007/s13105-019-00676-6
PII: 10.1007/s13105-019-00676-6
Knihovny.cz E-zdroje

In aging, the capacity of subcutaneous adipose tissue (SAT) to store lipids decreases and this results in metabolically unfavorable fat redistribution. Triggers of this age-related SAT dysfunction may include cellular senescence or endoplasmic reticulum (ER) stress. Therefore, we compared lipogenic capacity of SAT between young and older women and investigated its relation to senescence and ER stress markers. Samples of SAT and corresponding SAT-derived primary preadipocytes were obtained from two groups of women differing in age (36 vs. 72 years, n = 15 each) but matched for fat mass. mRNA levels of selected genes (lipogenesis: ACACA, FASN, SCD1, DGAT2, ELOVL6; senescence: p16, p21, NOX4, GDF15; ER stress-ATF4, XBP1s, PERK, HSPA5, GADD34, HYOU1, CHOP, EDEM1, DNAJC3) were assessed by qPCR, protein levels of GDF15 by ELISA, and mitochondrial function by the Seahorse Analyzer. Compared to the young, SAT and in vitro differentiated adipocytes from older women exhibited reduced mRNA expression of lipogenic enzymes. Out of analyzed senescence and ER stress markers, the only gene, whose expression correlated negatively with the expression of lipogenic enzymes in both SAT and adipocytes, was GDF15, a marker of not only senescence but also mitochondrial dysfunction. In line with this, inhibition of mitochondrial ATP synthase in adipocytes strongly upregulated GDF15 while reduced expression of lipogenic enzymes. Moreover, adipocytes from older women had a tendency for diminished mitochondrial capacity. Thus, a reduced lipogenic capacity of adipocytes in aged SAT appears to be linked to mitochondrial dysfunction rather than to ER stress or accumulation of senescent cells.

Zobrazit více v PubMed

Behnke J, Feige MJ, Hendershot LM (2015) BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 427:1589–1608. https://doi.org/10.1016/j.jmb.2015.02.011 PubMed DOI PMC

Bohnert KR, McMillan JD, Kumar A (2018) Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol 233:67–78. https://doi.org/10.1002/jcp.25852 PubMed DOI

Boulet N, Esteve D, Bouloumie A, Galitzky J (2013) Cellular heterogeneity in superficial and deep subcutaneous adipose tissues in overweight patients. J Physiol Biochem 69:575–583. https://doi.org/10.1007/s13105-012-0225-4 PubMed DOI

Capel F, Klimcakova E, Viguerie N, Roussel B, Vitkova M, Kovacikova M, Polak J, Kovacova Z, Galitzky J, Maoret JJ, Hanacek J, Pers TH, Bouloumie A, Stich V, Langin D (2009) Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 58:1558–1567. https://doi.org/10.2337/db09-0033 PubMed DOI PMC

Collins JM, Neville MJ, Pinnick KE, Hodson L, Ruyter B, van Dijk TH, Reijngoud DJ, Fielding MD, Frayn KN (2011) De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J Lipid Res 52:1683–1692. https://doi.org/10.1194/jlr.M012195 PubMed DOI PMC

Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, Ito M (2016) Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr Gerontol Int 16(Suppl 1):17–29. https://doi.org/10.1111/ggi.12724 PubMed DOI

Ghosh AK, Garg SK, Mau T, O'Brien M, Liu J, Yung R (2015) Elevated endoplasmic reticulum stress response contributes to adipose tissue inflammation in aging. J Gerontol A Biol Sci Med Sci 70:1320–1329. https://doi.org/10.1093/gerona/glu186 PubMed DOI

Girousse A, Tavernier G, Valle C, Moro C, Mejhert N, Dinel AL, Houssier M, Roussel B, Besse-Patin A, Combes M, Mir L, Monbrun L, Bezaire V, Prunet-Marcassus B, Waget A, Vila I, Caspar-Bauguil S, Louche K, Marques MA, Mairal A, Renoud ML, Galitzky J, Holm C, Mouisel E, Thalamas C, Viguerie N, Sulpice T, Burcelin R, Arner P, Langin D (2013) Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol 11:e1001485. https://doi.org/10.1371/journal.pbio.1001485 PubMed DOI PMC

Gregor MF, Hotamisligil GS (2007) Thematic review series: adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 48:1905–1914. https://doi.org/10.1194/jlr.R700007-JLR200 PubMed DOI

Hasan AU, Ohmori K, Hashimoto T, Kamitori K, Yamaguchi F, Konishi K, Noma T, Igarashi J, Yamashita T, Hirano K, Tokuda M, Minamino T, Nishiyama A, Kohno M (2017) Increase in tumor suppressor Arf compensates gene dysregulation in in vitro aged adipocytes. Biogerontology 18:55–68. https://doi.org/10.1007/s10522-016-9661-9 PubMed DOI

Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102. https://doi.org/10.1038/nrm3270 DOI

Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917. https://doi.org/10.1016/j.cell.2010.02.034 PubMed DOI PMC

Hussain SG, Ramaiah KV (2007) Reduced eIF2alpha phosphorylation and increased proapoptotic proteins in aging. Biochem Biophys Res Commun 355:365–370. https://doi.org/10.1016/j.bbrc.2007.01.156 PubMed DOI

Koc M, Mayerova V, Kracmerova J, Mairal A, Malisova L, Stich V, Langin D, Rossmeislova L (2015) Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes. Biochem Biophys Res Commun 460:684–690. https://doi.org/10.1016/j.bbrc.2015.03.090 PubMed DOI

Lionetti L, Mollica MP, Lombardi A, Cavaliere G, Gifuni G, Barletta A (2009) From chronic overnutrition to insulin resistance: the role of fat-storing capacity and inflammation. Nutr Metab Cardiovasc Dis 19:146–152. https://doi.org/10.1016/j.numecd.2008.10.010 PubMed DOI

Martinez G, Duran-Aniotz C, Cabral-Miranda F, Vivar JP, Hetz C (2017) Endoplasmic reticulum proteostasis impairment in aging. Aging Cell 16:615–623. https://doi.org/10.1111/acel.12599 PubMed DOI PMC

Mennes E, Dungan CM, Frendo-Cumbo S, Williamson DL, Wright DC (2014) Aging-associated reductions in lipolytic and mitochondrial proteins in mouse adipose tissue are not rescued by metformin treatment. J Gerontol A Biol Sci Med Sci 69:1060–1068. https://doi.org/10.1093/gerona/glt156 PubMed DOI

Mitterberger MC, Lechner S, Mattesich M, Zwerschke W (2014) Adipogenic differentiation is impaired in replicative senescent human subcutaneous adipose-derived stromal/progenitor cells. J Gerontol A Biol Sci Med Sci 69:13–24. https://doi.org/10.1093/gerona/glt043 PubMed DOI

Mlinar B, Marc J (2011) New insights into adipose tissue dysfunction in insulin resistance. Clin Chem Lab Med 49:1925–1935. https://doi.org/10.1515/CCLM.2011.697 PubMed DOI

Montero R, Yubero D, Villarroya J, Henares D, Jou C, Rodriguez MA, Ramos F, Nascimento A, Ortez CI, Campistol J, Perez-Duenas B, O'Callaghan M, Pineda M, Garcia-Cazorla A, Oferil JC, Montoya J, Ruiz-Pesini E, Emperador S, Meznaric M, Campderros L, Kalko SG, Villarroya F, Artuch R, Jimenez-Mallebrera C (2016) GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction. PLoS One 11:e0148709. https://doi.org/10.1371/journal.pone.0148709 PubMed DOI PMC

Naidoo N (2009) ER and aging-protein folding and the ER stress response. Ageing Res Rev 8:150–159. https://doi.org/10.1016/j.arr.2009.03.001 PubMed DOI

Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL (2015) Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64:2289–2298. https://doi.org/10.2337/db14-1820 PubMed DOI PMC

Roberts R, Hodson L, Dennis AL, Neville MJ, Humphreys SM, Harnden KE, Micklem KJ, Frayn KN (2009) Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia 52:882–890. https://doi.org/10.1007/s00125-009-1300-4 PubMed DOI

Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853. https://doi.org/10.1038/nature05483 PubMed DOI PMC

Rossmeisl M, Syrovy I, Baumruk F, Flachs P, Janovska P, Kopecky J (2000) Decreased fatty acid synthesis due to mitochondrial uncoupling in adipose tissue. FASEB J 14:1793–1800 PubMed DOI

Rossmeislova L, Malisova L, Kracmerova J, Tencerova M, Kovacova Z, Koc M, Siklova-Vitkova M, Viquerie N, Langin D, Stich V (2013) Weight loss improves the adipogenic capacity of human preadipocytes and modulates their secretory profile. Diabetes 62:1990–1995. https://doi.org/10.2337/db12-0986 PubMed DOI PMC

Skurk T, Ecklebe S, Hauner H (2007) A novel technique to propagate primary human preadipocytes without loss of differentiation capacity. Obesity (Silver Spring) 15:2925–2931. https://doi.org/10.1038/oby.2007.349 DOI

Smith U, Kahn BB (2016) Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med 280:465–475. https://doi.org/10.1111/joim.12540 PubMed DOI PMC

Synofzik M, Haack TB, Kopajtich R, Gorza M, Rapaport D, Greiner M, Schonfeld C, Freiberg C, Schorr S, Holl RW, Gonzalez MA, Fritsche A, Fallier-Becker P, Zimmermann R, Strom TM, Meitinger T, Zuchner S, Schule R, Schols L, Prokisch H (2014) Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Genet 95:689–697. https://doi.org/10.1016/j.ajhg.2014.10.013 PubMed DOI PMC

Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684. https://doi.org/10.1111/j.1474-9726.2010.00608.x PubMed DOI PMC

Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11. https://doi.org/10.1042/BST20060007 PubMed DOI

Wong H, Riabowol K (1996) Differential CDK-inhibitor gene expression in aging human diploid fibroblasts. Exp Gerontol 31:311–325 PubMed DOI

Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, Patel RT, Lee J, Chen S, Peroni OD, Dhaneshwar AS, Hammarstedt A, Smith U, McGraw TE, Saghatelian A, Kahn BB (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159:318–332. https://doi.org/10.1016/j.cell.2014.09.035 PubMed DOI PMC

Zheng Z, Zhang C, Zhang K (2010) Role of unfolded protein response in lipogenesis. World J Hepatol 2:203–207. https://doi.org/10.4254/wjh.v2.i6.203 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...