Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression
Jazyk angličtina Země Španělsko Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
PubMed
30912009
DOI
10.1007/s13105-019-00676-6
PII: 10.1007/s13105-019-00676-6
Knihovny.cz E-zdroje
- Klíčová slova
- Aging, Lipogenesis, Mitochondrial dysfunction, Senescence, Stress of endoplasmic reticulum, Subcutaneous adipose tissue,
- MeSH
- biologické markery metabolismus MeSH
- buněčná diferenciace MeSH
- chaperon endoplazmatického retikula BiP MeSH
- dospělí MeSH
- lidé MeSH
- lipogeneze * MeSH
- mitochondrie metabolismus MeSH
- podkožní tuk metabolismus MeSH
- růstový diferenciační faktor 15 metabolismus MeSH
- senioři MeSH
- stárnutí buněk MeSH
- stárnutí metabolismus MeSH
- stres endoplazmatického retikula MeSH
- tukové buňky metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- biologické markery MeSH
- chaperon endoplazmatického retikula BiP MeSH
- GDF15 protein, human MeSH Prohlížeč
- HSPA5 protein, human MeSH Prohlížeč
- růstový diferenciační faktor 15 MeSH
In aging, the capacity of subcutaneous adipose tissue (SAT) to store lipids decreases and this results in metabolically unfavorable fat redistribution. Triggers of this age-related SAT dysfunction may include cellular senescence or endoplasmic reticulum (ER) stress. Therefore, we compared lipogenic capacity of SAT between young and older women and investigated its relation to senescence and ER stress markers. Samples of SAT and corresponding SAT-derived primary preadipocytes were obtained from two groups of women differing in age (36 vs. 72 years, n = 15 each) but matched for fat mass. mRNA levels of selected genes (lipogenesis: ACACA, FASN, SCD1, DGAT2, ELOVL6; senescence: p16, p21, NOX4, GDF15; ER stress-ATF4, XBP1s, PERK, HSPA5, GADD34, HYOU1, CHOP, EDEM1, DNAJC3) were assessed by qPCR, protein levels of GDF15 by ELISA, and mitochondrial function by the Seahorse Analyzer. Compared to the young, SAT and in vitro differentiated adipocytes from older women exhibited reduced mRNA expression of lipogenic enzymes. Out of analyzed senescence and ER stress markers, the only gene, whose expression correlated negatively with the expression of lipogenic enzymes in both SAT and adipocytes, was GDF15, a marker of not only senescence but also mitochondrial dysfunction. In line with this, inhibition of mitochondrial ATP synthase in adipocytes strongly upregulated GDF15 while reduced expression of lipogenic enzymes. Moreover, adipocytes from older women had a tendency for diminished mitochondrial capacity. Thus, a reduced lipogenic capacity of adipocytes in aged SAT appears to be linked to mitochondrial dysfunction rather than to ER stress or accumulation of senescent cells.
2nd Department of Internal Medicine University Hospital Kralovske Vinohrady Prague Czech Republic
Department of Clinical Biochemistry Toulouse University Hospitals Toulouse France
Department of Pathophysiology 3rd Faculty of Medicine Charles University Prague Czech Republic
INSERM UMR1048 Institute of Metabolic and Cardiovascular Diseases Toulouse France
Zobrazit více v PubMed
Behnke J, Feige MJ, Hendershot LM (2015) BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 427:1589–1608. https://doi.org/10.1016/j.jmb.2015.02.011 PubMed DOI PMC
Bohnert KR, McMillan JD, Kumar A (2018) Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol 233:67–78. https://doi.org/10.1002/jcp.25852 PubMed DOI
Boulet N, Esteve D, Bouloumie A, Galitzky J (2013) Cellular heterogeneity in superficial and deep subcutaneous adipose tissues in overweight patients. J Physiol Biochem 69:575–583. https://doi.org/10.1007/s13105-012-0225-4 PubMed DOI
Capel F, Klimcakova E, Viguerie N, Roussel B, Vitkova M, Kovacikova M, Polak J, Kovacova Z, Galitzky J, Maoret JJ, Hanacek J, Pers TH, Bouloumie A, Stich V, Langin D (2009) Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 58:1558–1567. https://doi.org/10.2337/db09-0033 PubMed DOI PMC
Collins JM, Neville MJ, Pinnick KE, Hodson L, Ruyter B, van Dijk TH, Reijngoud DJ, Fielding MD, Frayn KN (2011) De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation. J Lipid Res 52:1683–1692. https://doi.org/10.1194/jlr.M012195 PubMed DOI PMC
Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, Ito M (2016) Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr Gerontol Int 16(Suppl 1):17–29. https://doi.org/10.1111/ggi.12724 PubMed DOI
Ghosh AK, Garg SK, Mau T, O'Brien M, Liu J, Yung R (2015) Elevated endoplasmic reticulum stress response contributes to adipose tissue inflammation in aging. J Gerontol A Biol Sci Med Sci 70:1320–1329. https://doi.org/10.1093/gerona/glu186 PubMed DOI
Girousse A, Tavernier G, Valle C, Moro C, Mejhert N, Dinel AL, Houssier M, Roussel B, Besse-Patin A, Combes M, Mir L, Monbrun L, Bezaire V, Prunet-Marcassus B, Waget A, Vila I, Caspar-Bauguil S, Louche K, Marques MA, Mairal A, Renoud ML, Galitzky J, Holm C, Mouisel E, Thalamas C, Viguerie N, Sulpice T, Burcelin R, Arner P, Langin D (2013) Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol 11:e1001485. https://doi.org/10.1371/journal.pbio.1001485 PubMed DOI PMC
Gregor MF, Hotamisligil GS (2007) Thematic review series: adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 48:1905–1914. https://doi.org/10.1194/jlr.R700007-JLR200 PubMed DOI
Hasan AU, Ohmori K, Hashimoto T, Kamitori K, Yamaguchi F, Konishi K, Noma T, Igarashi J, Yamashita T, Hirano K, Tokuda M, Minamino T, Nishiyama A, Kohno M (2017) Increase in tumor suppressor Arf compensates gene dysregulation in in vitro aged adipocytes. Biogerontology 18:55–68. https://doi.org/10.1007/s10522-016-9661-9 PubMed DOI
Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102. https://doi.org/10.1038/nrm3270 DOI
Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917. https://doi.org/10.1016/j.cell.2010.02.034 PubMed DOI PMC
Hussain SG, Ramaiah KV (2007) Reduced eIF2alpha phosphorylation and increased proapoptotic proteins in aging. Biochem Biophys Res Commun 355:365–370. https://doi.org/10.1016/j.bbrc.2007.01.156 PubMed DOI
Koc M, Mayerova V, Kracmerova J, Mairal A, Malisova L, Stich V, Langin D, Rossmeislova L (2015) Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes. Biochem Biophys Res Commun 460:684–690. https://doi.org/10.1016/j.bbrc.2015.03.090 PubMed DOI
Lionetti L, Mollica MP, Lombardi A, Cavaliere G, Gifuni G, Barletta A (2009) From chronic overnutrition to insulin resistance: the role of fat-storing capacity and inflammation. Nutr Metab Cardiovasc Dis 19:146–152. https://doi.org/10.1016/j.numecd.2008.10.010 PubMed DOI
Martinez G, Duran-Aniotz C, Cabral-Miranda F, Vivar JP, Hetz C (2017) Endoplasmic reticulum proteostasis impairment in aging. Aging Cell 16:615–623. https://doi.org/10.1111/acel.12599 PubMed DOI PMC
Mennes E, Dungan CM, Frendo-Cumbo S, Williamson DL, Wright DC (2014) Aging-associated reductions in lipolytic and mitochondrial proteins in mouse adipose tissue are not rescued by metformin treatment. J Gerontol A Biol Sci Med Sci 69:1060–1068. https://doi.org/10.1093/gerona/glt156 PubMed DOI
Mitterberger MC, Lechner S, Mattesich M, Zwerschke W (2014) Adipogenic differentiation is impaired in replicative senescent human subcutaneous adipose-derived stromal/progenitor cells. J Gerontol A Biol Sci Med Sci 69:13–24. https://doi.org/10.1093/gerona/glt043 PubMed DOI
Mlinar B, Marc J (2011) New insights into adipose tissue dysfunction in insulin resistance. Clin Chem Lab Med 49:1925–1935. https://doi.org/10.1515/CCLM.2011.697 PubMed DOI
Montero R, Yubero D, Villarroya J, Henares D, Jou C, Rodriguez MA, Ramos F, Nascimento A, Ortez CI, Campistol J, Perez-Duenas B, O'Callaghan M, Pineda M, Garcia-Cazorla A, Oferil JC, Montoya J, Ruiz-Pesini E, Emperador S, Meznaric M, Campderros L, Kalko SG, Villarroya F, Artuch R, Jimenez-Mallebrera C (2016) GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction. PLoS One 11:e0148709. https://doi.org/10.1371/journal.pone.0148709 PubMed DOI PMC
Naidoo N (2009) ER and aging-protein folding and the ER stress response. Ageing Res Rev 8:150–159. https://doi.org/10.1016/j.arr.2009.03.001 PubMed DOI
Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL (2015) Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64:2289–2298. https://doi.org/10.2337/db14-1820 PubMed DOI PMC
Roberts R, Hodson L, Dennis AL, Neville MJ, Humphreys SM, Harnden KE, Micklem KJ, Frayn KN (2009) Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia 52:882–890. https://doi.org/10.1007/s00125-009-1300-4 PubMed DOI
Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853. https://doi.org/10.1038/nature05483 PubMed DOI PMC
Rossmeisl M, Syrovy I, Baumruk F, Flachs P, Janovska P, Kopecky J (2000) Decreased fatty acid synthesis due to mitochondrial uncoupling in adipose tissue. FASEB J 14:1793–1800 PubMed DOI
Rossmeislova L, Malisova L, Kracmerova J, Tencerova M, Kovacova Z, Koc M, Siklova-Vitkova M, Viquerie N, Langin D, Stich V (2013) Weight loss improves the adipogenic capacity of human preadipocytes and modulates their secretory profile. Diabetes 62:1990–1995. https://doi.org/10.2337/db12-0986 PubMed DOI PMC
Skurk T, Ecklebe S, Hauner H (2007) A novel technique to propagate primary human preadipocytes without loss of differentiation capacity. Obesity (Silver Spring) 15:2925–2931. https://doi.org/10.1038/oby.2007.349 DOI
Smith U, Kahn BB (2016) Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med 280:465–475. https://doi.org/10.1111/joim.12540 PubMed DOI PMC
Synofzik M, Haack TB, Kopajtich R, Gorza M, Rapaport D, Greiner M, Schonfeld C, Freiberg C, Schorr S, Holl RW, Gonzalez MA, Fritsche A, Fallier-Becker P, Zimmermann R, Strom TM, Meitinger T, Zuchner S, Schule R, Schols L, Prokisch H (2014) Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Genet 95:689–697. https://doi.org/10.1016/j.ajhg.2014.10.013 PubMed DOI PMC
Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684. https://doi.org/10.1111/j.1474-9726.2010.00608.x PubMed DOI PMC
Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11. https://doi.org/10.1042/BST20060007 PubMed DOI
Wong H, Riabowol K (1996) Differential CDK-inhibitor gene expression in aging human diploid fibroblasts. Exp Gerontol 31:311–325 PubMed DOI
Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, Patel RT, Lee J, Chen S, Peroni OD, Dhaneshwar AS, Hammarstedt A, Smith U, McGraw TE, Saghatelian A, Kahn BB (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159:318–332. https://doi.org/10.1016/j.cell.2014.09.035 PubMed DOI PMC
Zheng Z, Zhang C, Zhang K (2010) Role of unfolded protein response in lipogenesis. World J Hepatol 2:203–207. https://doi.org/10.4254/wjh.v2.i6.203 PubMed DOI PMC