Emerging and threatening vector-borne zoonoses in the world and in Europe: a brief update
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
30916639
PubMed Central
PMC6493274
DOI
10.1080/20477724.2019.1598127
Knihovny.cz E-zdroje
- Klíčová slova
- Outbreak, climatic changes, disease, host, immunity, pathogen, zoonotic,
- MeSH
- celosvětové zdraví MeSH
- hmyz - vektory růst a vývoj MeSH
- incidence MeSH
- klimatické změny MeSH
- objevující se infekční nemoci epidemiologie přenos MeSH
- zoonózy epidemiologie přenos MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
Climatic changes, landscape management, massive human, animal and commodity transportation represent important factors which are contributing to the spread of zoonotic diseases. The environmental and socioeconomic factors affecting the incidence of vector-borne zoonoses and possibilities for the reduction of disease impacts are discussed in the article. The most important zoonoses with expanding area of incidence and/or increasing occurrence are summarized, with special emphasis on the European region. While some diseases and their respective pathogens are indigenous to Europe (e.g. Lyme disease), others have been introduced to Europe from tropical areas (e.g. chikungunya or dengue fever). These emerging diseases may represent a serious threat in near future and better understanding of their spreading mechanisms, pathogenesis and consequent treatment is very important.
Zobrazit více v PubMed
Karesh WB, Dobson AD, Loyd-Smith JO, et al. Ecology of zoonoses: natural and unnatural histories. Lancet. 2012;380:1936–1945. PubMed PMC
Magori K, Drake JM.. The population dynamics of vector-borne diseases. Nat Educ Knowledge. 2013;4(4):14.
Thompson RCA. Parasite zoonoses and wildlife: one health, spillover and human activity. Int J Parasitol. 2013;43(12–13):1079–1088. PubMed PMC
Kilpatrick AM, Randolph SE. Drivers, dynamics, and control of emerging vector- borne zoonotic diseases. Lancet. 2012;380:1946–1955. PubMed PMC
Kramer LD. Complexity of virus-vector interactions. Curr Opin Virol. 2016;21:81–86. PubMed PMC
Estrada-Pena A, Venzal JM. Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change. J Med Entomol. 2007;44(6):1130–1138. PubMed
Campbell LP, Luther C, Moo-Llanes D, et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos Trans R Soc Lond B Biol Sci. 2015;370(1665):e20140135. PubMed PMC
Andersen LK, Davis MDP. Climate change and the epidemiology of selected tick-borne and mosquito-borne diseases: update from the international society of dermatology climate change task force. Int J Dermatol. 2017;56(3):252–259. PubMed
Rossati A. Global warming and its health impact. Int J Occup Environ Med. 2017;8(1):7–20. PubMed PMC
Reisen WK, Fang Y, Martinez VM. Effects of temperature on the transmission of west nile virus by culex tarsalis (Diptera: culicidae). J Med Entomol. 2006;43:309–317. PubMed
Ogden NH, Maarouf A, Barker IK, et al. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol. 2006;36(1):63–70. PubMed
Cortinas MR, Guerra MA, Jones CJ, et al. Detection, characterization, and prediction of tick-borne disease foci. Int J Med Microbiol. 2002;291(SI):11–20. PubMed
Randolph SE, Rogers DJ. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nature Rev Microbiol2010. 8:361–371. PubMed
Allan BF, Keesing F, Ostfeld RS. Effect of forest fragmentation on Lyme disease risk. Cons Biol. 2003;17(1):267–272.
Brownstein JS, Skelly DK, Holford TR, et al. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia. 2005;146(3):469–475. PubMed
Semenza JC. Prototype early warning systems for vector-borne diseases in Europe. Int J Environ Res Public Health. 2015;12(6):6333–6351. PubMed PMC
Baylis M. Potential impact of climate change on emerging vector-borne and other infections in the UK. Environ Health. 2017;16:(SI):45–51. PubMed PMC
Chandra RK. Nutrition and the immune system: an introduction. Am J Clin Nutr. 1997;66:460S–463S. PubMed
Beldomenico PM, Begon M. Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol Evol. 2009;25(1):21–27. PubMed
Benelli G, Beier JC. Current vector control challenges in the fight against malaria. Acta Trop. 2017;174:91–96. PubMed
Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–993. PubMed PMC
Bean AGD, Baker ML, Stewart CR, et al. Studying immunity to zoonotic diseases in the natural host - keeping it real. Nat Rev Immunol. 2013;13(12):851–861. PubMed PMC
Carvalho BM, Rangel EF, Vale MM. Evaluation of the impacts of climate change on disease vectors through ecological niche modelling. Bull Entomol Res. 2017;107(4):419–430. PubMed
Di Luca M, Toma L, Severini F, et al. First record of the invasive mosquito species Aedes (Stegomyia) albopictus (Diptera: culicidae) on the southernmost Mediterranean islands of Italy and Europe. Parasit Vectors. 2017;10:e543. PubMed PMC
Danis K, Baka A, Lenglet A, et al. Autochthonous Plasmodium vivax malaria in Greece, 2011. Euro Surveill. 2011;16(42):e19993. PubMed
Zitko T, Merdic E. Seasonal and spatial oviposition activity of Aedes albopictus (Diptera: culicidae) in Adriatic Croatia. J Med Entomol. 2014;51:760–768. PubMed
Millins C, Gilbert L, Medlock J, et al. Effects of conservation management of landscapes and vertebrate communities on Lyme borreliosis risk in the United Kingdom. Philos Trans R Soc Lond B Biol Sci. 2017;372(1722):e20160123. PubMed PMC
Mysterud A, Jore S, Østerås O, et al. Emergence of tick-borne diseases at northern latitudes in Europe: a comparative approach. Sci Rep. 2017;7:e16316. PubMed PMC
Lindgren E, Talleklint L, Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect. 2000;108(2):119–123. PubMed PMC
Daniel M, Danielova VV, Kriz B, et al. Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in Central Europe. Eur J Clin Microbiol Infect Dis. 2003;22(5):327–328. PubMed
Chomel B. Lyme disease. Rev Sci Tech. 2015;34(2):569–576. PubMed
Robinson M, Conan A, Duong V, et al. A model for a chikungunya outbreak in a rural Cambodian setting: implications for disease control in uninfected areas. PLoS Negl Trop Dis. 2014;8(9):e3120. PubMed PMC
Iverson SA, Gilchrist HG, Soos C, et al. Injecting epidemiology into population viability analysis: avian cholera transmission dynamics at an arctic seabird colony. J Anim Ecol. 2016;85(6):1481–1490. PubMed
Roehrig JT. West Nile virus in the United States- A historical perspective. Viruses. 2013;5(12):3088–3108. PubMed PMC
Papa A, Tsergouli K, Tsioka K, et al. Crimean-Congo hemorrhagic fever: tick-host-virus interactions. Front Cell Infect Microbiol. 2017;7:e213. PubMed PMC
Liu-Helmersson J, Quam M, Wilder-Smith A, et al. Climate change and Aedes vectors: 21st century projections for dengue transmission in Europe. EBioMedicine. 2016;7:267–277. PubMed PMC
Petric M, Lalic B, Ducheyne E, et al. Modelling the regional impact of climate change on the suitability of the establishment of the Asian tiger mosquito (Aedes albopictus) in Serbia. Clim Change. 2017;142(3–4):361–374.
Medlock JM, Hansford KM, Versteirt V, et al. An entomological review of invasive mosquitoes in Europe. Bull Entomol Res. 2015;105(6):637–663. PubMed
Medlock JM, Vaux AGC, Cull B, et al. Detection of the invasive mosquito species Aedes albopictus in southern England. Lancet Infect Dis. 2017;17(2):140. PubMed
Mittal R, Nguyen D, Debs LH, et al. Zika virus: an emerging global health threat. Front Cell Infect Microbiol. 2017;7;486. PubMed PMC
Simmons CP, Farrar JJ, Nguyen VV, et al. Dengue. N Engl J Med. 2012;366:1423–1432. PubMed
Gyawali N, Bradbury RS, Taylor-Robinson AW. The epidemiology of dengue infection: harnessing past experience and current knowledge to support implementation of future control strategies. J Vector Borne Dis. 2016;53(4):293–304. PubMed
Xuan LTT, Hau PV, Thu DT, et al. Estimates of meteorological variability in association with dengue cases in a coastal city in northern Vietnam: an ecological study. Glob Health Action. 2014;7:(SI):52–58. PubMed PMC
Murray CJL, Barber RM, Foreman KJ, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–2191. PubMed PMC
WHO: Dengue and severe dengue [Internet] Geneva (Switzerland): World Health Organisation; [updated 2018 Sep 13; cited 2018 Nov 21] Available from: http://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
La Ruche G, Souares Y, Armengaud A, et al. First two autochthonous dengue virus infections in metropolitan France, September 2010. Eurosurveillance. 2010;15(39):e19676. PubMed
Gjenero-Margan I, Aleraj B, Krajcar D, et al. Autochthonous dengue fever in Croatia, August–september 2010. Eurosurveillance. 2011;16(9):e19805. PubMed
ECDC: European Centre for Disease Prevention and Control Dengue outbreak in Madeira, Portugal, October–november 2012 [Internet]. Stockholm: 2013March [cited 2018 November21]. Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/dengue-outbreak-madeira-mission-report-nov-2012.pdf.
Collins MH, Metz SW. Progress and works in progress: update on flavivirus vaccine development. Clin Ther. 2017;39(8):1519–1536. PubMed
Godoi IP, Lemos LL, de Araújo VE, et al. CYD-TDV dengue vaccine: systematic review and meta-analysis of efficacy, immunogenicity and safety. J Comp Eff Res. 2017;6(2):165–180. PubMed
Burt FJ, Chen WM, Miner JJ, et al. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Inf Dis. 2017;17(4):107–117. PubMed
Wahid B, Ali A, Rafique S, et al. Global expansion of chikungunya virus: mapping the 64-year history. Int J Infect Dis. 2017;58:69–76. PubMed
WHO: Chikungunya [Internet].] Geneva (Switzerland): World Health Organisation [cited 2018 November21]. Available from: http://www.who.int/csr/disease/chikungunya/en/.
Eldi P, Cooper TH, Liu L, et al. Production of a chikungunya vaccine using a CHO cell and attenuated viral-based platform technology. Mol Ther. 2017;25(10):2332–2344. PubMed PMC
Moizéis RNC, Fernandes TAAM, Guedes PMDM, et al. Chikungunya fever: a threat to global public health. Pathog Glob Health. 2018;112(4):182–194. PubMed PMC
Dreshaj S, Ahmeti S, Ramadani N, et al. Current situation of Crimean-Congo hemorrhagic fever in Southeastern Europe and neighboring countries: a public health risk for the European Union? Travel Med Infect Dis. 2016;14(2):81–91. PubMed
Jauréguiberry S, Tattevin P, Tarantola A, et al. Imported Crimean-Congo hemorrhagic fever. J Clin Microbiol. 2005;43(9):4905–4907. PubMed PMC
Lumley S, Atkinson B, Dowall SD, et al. Non-fatal case of Crimean-Congo haemorrhagic fever imported into the United Kingdom (ex Bulgaria), June 2014. Eurosurveillance. 2014;19(30):6–8. PubMed
Estrada-Pena A, Nieves FJ. Impact of climate trends on tick-borne pathogen transmission. Front Physiol. 2012;3:e64. PubMed PMC
Ansari H, Shahbaz B, Izadi S, et al. Crimean-Congo hemorrhagic fever and its relationship with climate factors in southeast Iran: a 13-year experience. J Infect Dev Ctries. 2014;8(6):749–757. PubMed
Garrison AR, Shoemaker CJ, Golden JW, et al. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Negl Trop Dis. 2017;11(9):e0005908. PubMed PMC
Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis. 2004;23:147–156. PubMed
Gossner CM, Marrama L, Carson M, et al. West Nile virus surveillance in Europe: moving towards an integrated animal-human-vector approach. Euro Surveill. 2017;22(18):30526. PubMed PMC
Paz S, Semenza JC. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia—A review. Int J Environ Res Public Health. 2013;10:3543–3562. PubMed PMC
Petersen LR, Roehrig JT. West Nile virus: a reemerging global pathogen. Emerg Infect Dis. 2001;7:611–614. PubMed PMC
Drebot MA, Lindsay R, Barker IK, et al. West Nile virus surveillance and diagnostics: a Canadian perspective. Can J Infect Dis. 2003;14:105–114. PubMed PMC
Komar N, Clark GG. West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Publica. 2006;19:112–117. PubMed
EFSA/ECDC The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. Efsa J. 2014;12(2):1–312. PubMed PMC
ECDC: European Centre for Disease Prevention and Control Weekly updates: 2018 West Nile fever transmission season [Internet]. Stockholm: 23November2018. [cited 2019 February19]. Available from: https://ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc
Paz S. The West Nile Virus outbreak in Israel (2000) from a new perspective: the regional impact of climate change. Int J Environ Health Res. 2006;16(1):1–13. PubMed
Platonov AE, Fedorova MV, Karan LS, et al. Epidemiology of West Nile infection in Volgograd, Russia, in relation to climate change and mosquito (Diptera: culicidae) bionomics. Parasitol Res. 2008;103:S45–S53. PubMed
Paz S, Malkinson D, Green MS, et al. Permissive summer temperatures of the 2010 European West Nile fever upsurge. PLoS ONE. 2013;8(2):e56398. PubMed PMC
Parker DE, Legg TP, Folland CK. A new daily Central England temperature series, 1772–1991. Int J Climatol. 1992;12(4):317–342.
Lindgren E, Jaenson TGT. Lyme borreliosis in Europe: influences of climate and climagte changes, epidemiology, ecology and adaptation measures. Geneva, Report for World Heatlh Organisation, 2006. P 1–34. Available on:http://www.euro.who.int/__data/assets/pdf_file/0006/96819/E89522.pdf.
CDC: Lyme disease: Data and surveillance [Internet] Atlanta (GA): Centers for Disease Control and Prevention; [updated 2018 Nov 9; cited 2018 Nov 21]. Available from: https://www.cdc.gov/lyme/stats/index.html.
Lindgren E, Gustafson R. Tick-borne encephalitis in Sweden and climate change. Lancet. 2001;358(9275):16–18. PubMed
Franke J, Hildebrandt A, Dorn W. Exploring gaps in our knowledge on Lyme borreliosis spirochaetes - Updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis. 2013;4(1–2):11–25. PubMed
Richard S, Oppliger A. Zoonotic occupational diseases in forestry workers - Lyme borreliosis, tularemia and leptospirosis in Europe. Ann Agric Environ Med. 2015;22(1):43–50. PubMed
Kaaijk P, Luytjes W. Vaccination against Lyme disease: are we ready for it? Hum Vaccin Immunother. 2016;12(3):757–762. PubMed PMC
Zhao H, Bao FF, Liu AH. Safety, immunogenicity, and efficacy of Borrelia burgdorferi outer surface protein A (OspA) vaccine: A meta-analysis. J Infect Dev Ctries. 2017;11(1):1–9. PubMed
CDC: Bioterrorism Agents/Diseases [Internet] Atlanta (GA): Centers for Disease Control and Prevention; [updated 2017 Aug 17, cited 2018 Nov 21]. Available from: https://emergency.cdc.gov/agent/agentlist-category.asp.
Tosoni A, Mirijello A, Ciervo A, et al. Human Rickettsia aeschlimannii infection: first case with acute hepatitis and review of the literature. Eur Rev Med Pharmacol Sci. 2016;20:2630–2633. PubMed
Gonzalez PA, Escobar CE. Potentially emergent vector-borne diseases in the Mediterranean and their possible relationship with climate change. Emergencias. 2011;23(5):386–393.
de Sousa R, Nóbrega SD, Bacellar F, et al. Mediterranean spotted fever in Portugal: risk factors for fatal outcome in 105 hospitalized patients. Ann N Y Acad Sci. 2003;990:285–294. PubMed
Morais JD, Dawson JE, Greene C, et al. 1st European case of ehrlichiosis. Lancet. 1991;338(8767):633–634. PubMed
Ismail N, McBride JW. Tick-borne emerging infections ehrlichiosis and anaplasmosis. Clin Lab Med. 2017;37(2):317. PubMed
Parola P, Paddock CD, Socolovschi C, et al. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev. 2013;26(4):657–670. PubMed PMC
ECDC: European Centre for Disease Prevention and Control Epidemiological situation of rickettsioses in EU/EFTA countries [Internet]. Stockholm: 2013October [cited 2018 November21]. Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/Rickettsioses_2010_final.pdf.
Raoult D, Dupont HT, Caraco P, et al. Mediterranean spotted-fever in Marseilles- descriptive epidemiology and the influence of climatic factors. Eur J Epidemiol. 1992;8(2):192–197. PubMed
Vescio MF, Piras MA, Ciccozzi M, et al. Short report: socio-demographic and climatic factors as correlates of Mediterranean spotted fever (MSF) in northern Sardinia. Am J Trop Med Hyg. 2008;78(2):318–320. PubMed
Richards AL. Rickettsial vaccines: the old and the new. Expert Rev Vaccines. 2004;3(5):541–555. PubMed
CDC: Rickettsial (Spotted & Typhus Fevers) & Related Infections, including Anaplasmosis & Ehrlichiosis [Internet] Atlanta (GA): Centers for Disease Control and Prevention; [updated 2017 May 31, cited 2018 Nov 21]. Available from: https://wwwnc.cdc.gov/travel/yellowbook/2018/infectious-diseases-related-to-travel/rickettsial-spotted-and-typhus-fevers-and-related-infections-including-anaplasmosis-and-ehrlichiosis.
Carvalho CL, de Carvalho IL, Ze-Ze L, et al. Tularaemia: A challenging zoonosis. Comp Immunol Microbiol Infect Dis. 2014;37(2):85–96. PubMed PMC
Maurin M, Gyuranecz M. 016. Tularaemia: clinical aspects in Europe. Lancet Infect Dis. 2016;16(1):113–124. PubMed
Oyston PCF, Sjostedt A, Titball RW. Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat Rev Microbiol. 2004;2:967–978. PubMed
Gurcan S. Epidemiology of tularemia. Balk Med J. 2014;31(1):3–10. PubMed PMC
Nadjm B, Behrens RH. Malaria: an update for physicians. Infect Dis Clin North Am. 2012;26(2):243–259. PubMed
WHO: World malaria report 2017 [Internet] Geneva (Switzerland): World Health Organization [cited 2018 November21]. Available from: http://www.who.int/malaria/media/world-malaria-report-2017/en/
Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet. 2005;77(2):171–192. PubMed PMC
Hedrick PW. Population genetics of malaria resistance in humans. Heredity (Edinb). 2011;107(4):283–304. PubMed PMC
Perkins DJ, Were T, Davenport GC, et al. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci. 2011;7(9):1427–1442. PubMed PMC
Tanser FC, Sharp B, le Sueur D. Potential effect of climate change on malaria transmission in Africa. Lancet. 2003;362(9398):1792–1798. PubMed
Gething PW, Smith DL, Patil AP, et al. Climate change and the global malaria recession. Nature. 2010;465:342–346. PubMed PMC
Lyke KE. Steady progress toward a malaria vaccine. Curr Opin Infect Dis. 2017;30(5):463–470. PubMed
Oryan A, Akbari M. Worldwide risk factors in leishmaniasis. Asian Pac J Trop Med. 2016;9(10):901–909. PubMed
Colacicco-Mayhugh MG, Masuoka PM, Grieco JP. Ecological niche model of Phlebotomus alexandri and P. papatasi (Diptera: psychodidae) in the Middle East. Int J Health Geogr. 2010;9:e2. PubMed PMC
Alvar J, Velez ID, Bern C, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7(5):e35671. PubMed PMC
WHO: Leishmaniasis [Internet] Geneva (Switzerland): World Health Organization [2018 Mar 14, cited 2018 Nov 21]. Available from: http://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis.
WHO: Control of the leishmaniases [Internet] Geneva (Switzerland): World Health Organization [2010, cited 2018 November21]. Available from: http://apps.who.int/iris/bitstream/10665/44412/1/WHO_TRS_949_eng.pdf.
Torpiano P, Pace D. Leishmaniasis: diagnostic issues in Europe. Expert Rev Anti-Infect Ther. 2015;13(9):1123–1138. PubMed
Ribeiro RR, Michalick MSM, Da Silva ME, et al. Canine leishmaniasis: an overview of the current status and strategies for control. BioMed Res Int. 2018;e3296893. PubMed PMC
Chobu M, Nkwengulila G, Mahande AM, et al. Direct and indirect effect of predators on Anopheles gambiae sensu stricto. Acta Trop. 2015;142:131–137. PubMed
Diabate A, Tripet F. Targeting male mosquito mating behaviour for malaria control. Parazit Vectors. 2015;8:e347. PubMed PMC
Lezaun J, Porter N. Containment and competition: transgenic animals in the One Health agenda. Soc Sci Med. 2015;129(SI):96–105. PubMed
Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet. 2016;17(3):146–159. PubMed
Anne-Sophie B, Benoit G. Multidrug resistant (or antimicrobial-resistant) pathogens - alternatives to new antibiotics? Swiss Med Wkly. 2017;147:w14553. PubMed
Cansizoglu MF, Toprak E. Fighting against evolution of antibiotic resistance by utilizing evolvable antimicrobial drugs. Curr Genet. 2017;63(6):973–976. PubMed