Emerging and threatening vector-borne zoonoses in the world and in Europe: a brief update

. 2019 Mar ; 113 (2) : 49-57. [epub] 20190327

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30916639

Climatic changes, landscape management, massive human, animal and commodity transportation represent important factors which are contributing to the spread of zoonotic diseases. The environmental and socioeconomic factors affecting the incidence of vector-borne zoonoses and possibilities for the reduction of disease impacts are discussed in the article. The most important zoonoses with expanding area of incidence and/or increasing occurrence are summarized, with special emphasis on the European region. While some diseases and their respective pathogens are indigenous to Europe (e.g. Lyme disease), others have been introduced to Europe from tropical areas (e.g. chikungunya or dengue fever). These emerging diseases may represent a serious threat in near future and better understanding of their spreading mechanisms, pathogenesis and consequent treatment is very important.

Zobrazit více v PubMed

Karesh WB, Dobson AD, Loyd-Smith JO, et al. Ecology of zoonoses: natural and unnatural histories. Lancet. 2012;380:1936–1945. PubMed PMC

Magori K, Drake JM.. The population dynamics of vector-borne diseases. Nat Educ Knowledge. 2013;4(4):14.

Thompson RCA. Parasite zoonoses and wildlife: one health, spillover and human activity. Int J Parasitol. 2013;43(12–13):1079–1088. PubMed PMC

Kilpatrick AM, Randolph SE. Drivers, dynamics, and control of emerging vector- borne zoonotic diseases. Lancet. 2012;380:1946–1955. PubMed PMC

Kramer LD. Complexity of virus-vector interactions. Curr Opin Virol. 2016;21:81–86. PubMed PMC

Estrada-Pena A, Venzal JM. Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change. J Med Entomol. 2007;44(6):1130–1138. PubMed

Campbell LP, Luther C, Moo-Llanes D, et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos Trans R Soc Lond B Biol Sci. 2015;370(1665):e20140135. PubMed PMC

Andersen LK, Davis MDP. Climate change and the epidemiology of selected tick-borne and mosquito-borne diseases: update from the international society of dermatology climate change task force. Int J Dermatol. 2017;56(3):252–259. PubMed

Rossati A. Global warming and its health impact. Int J Occup Environ Med. 2017;8(1):7–20. PubMed PMC

Reisen WK, Fang Y, Martinez VM. Effects of temperature on the transmission of west nile virus by culex tarsalis (Diptera: culicidae). J Med Entomol. 2006;43:309–317. PubMed

Ogden NH, Maarouf A, Barker IK, et al. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol. 2006;36(1):63–70. PubMed

Cortinas MR, Guerra MA, Jones CJ, et al. Detection, characterization, and prediction of tick-borne disease foci. Int J Med Microbiol. 2002;291(SI):11–20. PubMed

Randolph SE, Rogers DJ. The arrival, establishment and spread of exotic diseases: patterns and predictions. Nature Rev Microbiol2010. 8:361–371. PubMed

Allan BF, Keesing F, Ostfeld RS. Effect of forest fragmentation on Lyme disease risk. Cons Biol. 2003;17(1):267–272.

Brownstein JS, Skelly DK, Holford TR, et al. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia. 2005;146(3):469–475. PubMed

Semenza JC. Prototype early warning systems for vector-borne diseases in Europe. Int J Environ Res Public Health. 2015;12(6):6333–6351. PubMed PMC

Baylis M. Potential impact of climate change on emerging vector-borne and other infections in the UK. Environ Health. 2017;16:(SI):45–51. PubMed PMC

Chandra RK. Nutrition and the immune system: an introduction. Am J Clin Nutr. 1997;66:460S–463S. PubMed

Beldomenico PM, Begon M. Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol Evol. 2009;25(1):21–27. PubMed

Benelli G, Beier JC. Current vector control challenges in the fight against malaria. Acta Trop. 2017;174:91–96. PubMed

Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–993. PubMed PMC

Bean AGD, Baker ML, Stewart CR, et al. Studying immunity to zoonotic diseases in the natural host - keeping it real. Nat Rev Immunol. 2013;13(12):851–861. PubMed PMC

Carvalho BM, Rangel EF, Vale MM. Evaluation of the impacts of climate change on disease vectors through ecological niche modelling. Bull Entomol Res. 2017;107(4):419–430. PubMed

Di Luca M, Toma L, Severini F, et al. First record of the invasive mosquito species Aedes (Stegomyia) albopictus (Diptera: culicidae) on the southernmost Mediterranean islands of Italy and Europe. Parasit Vectors. 2017;10:e543. PubMed PMC

Danis K, Baka A, Lenglet A, et al. Autochthonous Plasmodium vivax malaria in Greece, 2011. Euro Surveill. 2011;16(42):e19993. PubMed

Zitko T, Merdic E. Seasonal and spatial oviposition activity of Aedes albopictus (Diptera: culicidae) in Adriatic Croatia. J Med Entomol. 2014;51:760–768. PubMed

Millins C, Gilbert L, Medlock J, et al. Effects of conservation management of landscapes and vertebrate communities on Lyme borreliosis risk in the United Kingdom. Philos Trans R Soc Lond B Biol Sci. 2017;372(1722):e20160123. PubMed PMC

Mysterud A, Jore S, Østerås O, et al. Emergence of tick-borne diseases at northern latitudes in Europe: a comparative approach. Sci Rep. 2017;7:e16316. PubMed PMC

Lindgren E, Talleklint L, Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect. 2000;108(2):119–123. PubMed PMC

Daniel M, Danielova VV, Kriz B, et al. Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in Central Europe. Eur J Clin Microbiol Infect Dis. 2003;22(5):327–328. PubMed

Chomel B. Lyme disease. Rev Sci Tech. 2015;34(2):569–576. PubMed

Robinson M, Conan A, Duong V, et al. A model for a chikungunya outbreak in a rural Cambodian setting: implications for disease control in uninfected areas. PLoS Negl Trop Dis. 2014;8(9):e3120. PubMed PMC

Iverson SA, Gilchrist HG, Soos C, et al. Injecting epidemiology into population viability analysis: avian cholera transmission dynamics at an arctic seabird colony. J Anim Ecol. 2016;85(6):1481–1490. PubMed

Roehrig JT. West Nile virus in the United States- A historical perspective. Viruses. 2013;5(12):3088–3108. PubMed PMC

Papa A, Tsergouli K, Tsioka K, et al. Crimean-Congo hemorrhagic fever: tick-host-virus interactions. Front Cell Infect Microbiol. 2017;7:e213. PubMed PMC

Liu-Helmersson J, Quam M, Wilder-Smith A, et al. Climate change and Aedes vectors: 21st century projections for dengue transmission in Europe. EBioMedicine. 2016;7:267–277. PubMed PMC

Petric M, Lalic B, Ducheyne E, et al. Modelling the regional impact of climate change on the suitability of the establishment of the Asian tiger mosquito (Aedes albopictus) in Serbia. Clim Change. 2017;142(3–4):361–374.

Medlock JM, Hansford KM, Versteirt V, et al. An entomological review of invasive mosquitoes in Europe. Bull Entomol Res. 2015;105(6):637–663. PubMed

Medlock JM, Vaux AGC, Cull B, et al. Detection of the invasive mosquito species Aedes albopictus in southern England. Lancet Infect Dis. 2017;17(2):140. PubMed

Mittal R, Nguyen D, Debs LH, et al. Zika virus: an emerging global health threat. Front Cell Infect Microbiol. 2017;7;486. PubMed PMC

Simmons CP, Farrar JJ, Nguyen VV, et al. Dengue. N Engl J Med. 2012;366:1423–1432. PubMed

Gyawali N, Bradbury RS, Taylor-Robinson AW. The epidemiology of dengue infection: harnessing past experience and current knowledge to support implementation of future control strategies. J Vector Borne Dis. 2016;53(4):293–304. PubMed

Xuan LTT, Hau PV, Thu DT, et al. Estimates of meteorological variability in association with dengue cases in a coastal city in northern Vietnam: an ecological study. Glob Health Action. 2014;7:(SI):52–58. PubMed PMC

Murray CJL, Barber RM, Foreman KJ, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–2191. PubMed PMC

WHO: Dengue and severe dengue [Internet] Geneva (Switzerland): World Health Organisation; [updated 2018 Sep 13; cited 2018 Nov 21] Available from: http://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

La Ruche G, Souares Y, Armengaud A, et al. First two autochthonous dengue virus infections in metropolitan France, September 2010. Eurosurveillance. 2010;15(39):e19676. PubMed

Gjenero-Margan I, Aleraj B, Krajcar D, et al. Autochthonous dengue fever in Croatia, August–september 2010. Eurosurveillance. 2011;16(9):e19805. PubMed

ECDC: European Centre for Disease Prevention and Control Dengue outbreak in Madeira, Portugal, October–november 2012 [Internet]. Stockholm: 2013March [cited 2018 November21]. Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/dengue-outbreak-madeira-mission-report-nov-2012.pdf.

Collins MH, Metz SW. Progress and works in progress: update on flavivirus vaccine development. Clin Ther. 2017;39(8):1519–1536. PubMed

Godoi IP, Lemos LL, de Araújo VE, et al. CYD-TDV dengue vaccine: systematic review and meta-analysis of efficacy, immunogenicity and safety. J Comp Eff Res. 2017;6(2):165–180. PubMed

Burt FJ, Chen WM, Miner JJ, et al. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Inf Dis. 2017;17(4):107–117. PubMed

Wahid B, Ali A, Rafique S, et al. Global expansion of chikungunya virus: mapping the 64-year history. Int J Infect Dis. 2017;58:69–76. PubMed

WHO: Chikungunya [Internet].] Geneva (Switzerland): World Health Organisation [cited 2018 November21]. Available from: http://www.who.int/csr/disease/chikungunya/en/.

Eldi P, Cooper TH, Liu L, et al. Production of a chikungunya vaccine using a CHO cell and attenuated viral-based platform technology. Mol Ther. 2017;25(10):2332–2344. PubMed PMC

Moizéis RNC, Fernandes TAAM, Guedes PMDM, et al. Chikungunya fever: a threat to global public health. Pathog Glob Health. 2018;112(4):182–194. PubMed PMC

Dreshaj S, Ahmeti S, Ramadani N, et al. Current situation of Crimean-Congo hemorrhagic fever in Southeastern Europe and neighboring countries: a public health risk for the European Union? Travel Med Infect Dis. 2016;14(2):81–91. PubMed

Jauréguiberry S, Tattevin P, Tarantola A, et al. Imported Crimean-Congo hemorrhagic fever. J Clin Microbiol. 2005;43(9):4905–4907. PubMed PMC

Lumley S, Atkinson B, Dowall SD, et al. Non-fatal case of Crimean-Congo haemorrhagic fever imported into the United Kingdom (ex Bulgaria), June 2014. Eurosurveillance. 2014;19(30):6–8. PubMed

Estrada-Pena A, Nieves FJ. Impact of climate trends on tick-borne pathogen transmission. Front Physiol. 2012;3:e64. PubMed PMC

Ansari H, Shahbaz B, Izadi S, et al. Crimean-Congo hemorrhagic fever and its relationship with climate factors in southeast Iran: a 13-year experience. J Infect Dev Ctries. 2014;8(6):749–757. PubMed

Garrison AR, Shoemaker CJ, Golden JW, et al. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Negl Trop Dis. 2017;11(9):e0005908. PubMed PMC

Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis. 2004;23:147–156. PubMed

Gossner CM, Marrama L, Carson M, et al. West Nile virus surveillance in Europe: moving towards an integrated animal-human-vector approach. Euro Surveill. 2017;22(18):30526. PubMed PMC

Paz S, Semenza JC. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia—A review. Int J Environ Res Public Health. 2013;10:3543–3562. PubMed PMC

Petersen LR, Roehrig JT. West Nile virus: a reemerging global pathogen. Emerg Infect Dis. 2001;7:611–614. PubMed PMC

Drebot MA, Lindsay R, Barker IK, et al. West Nile virus surveillance and diagnostics: a Canadian perspective. Can J Infect Dis. 2003;14:105–114. PubMed PMC

Komar N, Clark GG. West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Publica. 2006;19:112–117. PubMed

EFSA/ECDC The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. Efsa J. 2014;12(2):1–312. PubMed PMC

ECDC: European Centre for Disease Prevention and Control Weekly updates: 2018 West Nile fever transmission season [Internet]. Stockholm: 23November2018. [cited 2019 February19]. Available from: https://ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc

Paz S. The West Nile Virus outbreak in Israel (2000) from a new perspective: the regional impact of climate change. Int J Environ Health Res. 2006;16(1):1–13. PubMed

Platonov AE, Fedorova MV, Karan LS, et al. Epidemiology of West Nile infection in Volgograd, Russia, in relation to climate change and mosquito (Diptera: culicidae) bionomics. Parasitol Res. 2008;103:S45–S53. PubMed

Paz S, Malkinson D, Green MS, et al. Permissive summer temperatures of the 2010 European West Nile fever upsurge. PLoS ONE. 2013;8(2):e56398. PubMed PMC

Parker DE, Legg TP, Folland CK. A new daily Central England temperature series, 1772–1991. Int J Climatol. 1992;12(4):317–342.

Lindgren E, Jaenson TGT. Lyme borreliosis in Europe: influences of climate and climagte changes, epidemiology, ecology and adaptation measures. Geneva, Report for World Heatlh Organisation, 2006. P 1–34. Available on:http://www.euro.who.int/__data/assets/pdf_file/0006/96819/E89522.pdf.

CDC: Lyme disease: Data and surveillance [Internet] Atlanta (GA): Centers for Disease Control and Prevention; [updated 2018 Nov 9; cited 2018 Nov 21]. Available from: https://www.cdc.gov/lyme/stats/index.html.

Lindgren E, Gustafson R. Tick-borne encephalitis in Sweden and climate change. Lancet. 2001;358(9275):16–18. PubMed

Franke J, Hildebrandt A, Dorn W. Exploring gaps in our knowledge on Lyme borreliosis spirochaetes - Updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis. 2013;4(1–2):11–25. PubMed

Richard S, Oppliger A. Zoonotic occupational diseases in forestry workers - Lyme borreliosis, tularemia and leptospirosis in Europe. Ann Agric Environ Med. 2015;22(1):43–50. PubMed

Kaaijk P, Luytjes W. Vaccination against Lyme disease: are we ready for it? Hum Vaccin Immunother. 2016;12(3):757–762. PubMed PMC

Zhao H, Bao FF, Liu AH. Safety, immunogenicity, and efficacy of Borrelia burgdorferi outer surface protein A (OspA) vaccine: A meta-analysis. J Infect Dev Ctries. 2017;11(1):1–9. PubMed

CDC: Bioterrorism Agents/Diseases [Internet] Atlanta (GA): Centers for Disease Control and Prevention; [updated 2017 Aug 17, cited 2018 Nov 21]. Available from: https://emergency.cdc.gov/agent/agentlist-category.asp.

Tosoni A, Mirijello A, Ciervo A, et al. Human Rickettsia aeschlimannii infection: first case with acute hepatitis and review of the literature. Eur Rev Med Pharmacol Sci. 2016;20:2630–2633. PubMed

Gonzalez PA, Escobar CE. Potentially emergent vector-borne diseases in the Mediterranean and their possible relationship with climate change. Emergencias. 2011;23(5):386–393.

de Sousa R, Nóbrega SD, Bacellar F, et al. Mediterranean spotted fever in Portugal: risk factors for fatal outcome in 105 hospitalized patients. Ann N Y Acad Sci. 2003;990:285–294. PubMed

Morais JD, Dawson JE, Greene C, et al. 1st European case of ehrlichiosis. Lancet. 1991;338(8767):633–634. PubMed

Ismail N, McBride JW. Tick-borne emerging infections ehrlichiosis and anaplasmosis. Clin Lab Med. 2017;37(2):317. PubMed

Parola P, Paddock CD, Socolovschi C, et al. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev. 2013;26(4):657–670. PubMed PMC

ECDC: European Centre for Disease Prevention and Control Epidemiological situation of rickettsioses in EU/EFTA countries [Internet]. Stockholm: 2013October [cited 2018 November21]. Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/Rickettsioses_2010_final.pdf.

Raoult D, Dupont HT, Caraco P, et al. Mediterranean spotted-fever in Marseilles- descriptive epidemiology and the influence of climatic factors. Eur J Epidemiol. 1992;8(2):192–197. PubMed

Vescio MF, Piras MA, Ciccozzi M, et al. Short report: socio-demographic and climatic factors as correlates of Mediterranean spotted fever (MSF) in northern Sardinia. Am J Trop Med Hyg. 2008;78(2):318–320. PubMed

Richards AL. Rickettsial vaccines: the old and the new. Expert Rev Vaccines. 2004;3(5):541–555. PubMed

CDC: Rickettsial (Spotted & Typhus Fevers) & Related Infections, including Anaplasmosis & Ehrlichiosis [Internet] Atlanta (GA): Centers for Disease Control and Prevention; [updated 2017 May 31, cited 2018 Nov 21]. Available from: https://wwwnc.cdc.gov/travel/yellowbook/2018/infectious-diseases-related-to-travel/rickettsial-spotted-and-typhus-fevers-and-related-infections-including-anaplasmosis-and-ehrlichiosis.

Carvalho CL, de Carvalho IL, Ze-Ze L, et al. Tularaemia: A challenging zoonosis. Comp Immunol Microbiol Infect Dis. 2014;37(2):85–96. PubMed PMC

Maurin M, Gyuranecz M. 016. Tularaemia: clinical aspects in Europe. Lancet Infect Dis. 2016;16(1):113–124. PubMed

Oyston PCF, Sjostedt A, Titball RW. Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat Rev Microbiol. 2004;2:967–978. PubMed

Gurcan S. Epidemiology of tularemia. Balk Med J. 2014;31(1):3–10. PubMed PMC

Nadjm B, Behrens RH. Malaria: an update for physicians. Infect Dis Clin North Am. 2012;26(2):243–259. PubMed

WHO: World malaria report 2017 [Internet] Geneva (Switzerland): World Health Organization [cited 2018 November21]. Available from: http://www.who.int/malaria/media/world-malaria-report-2017/en/

Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet. 2005;77(2):171–192. PubMed PMC

Hedrick PW. Population genetics of malaria resistance in humans. Heredity (Edinb). 2011;107(4):283–304. PubMed PMC

Perkins DJ, Were T, Davenport GC, et al. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci. 2011;7(9):1427–1442. PubMed PMC

Tanser FC, Sharp B, le Sueur D. Potential effect of climate change on malaria transmission in Africa. Lancet. 2003;362(9398):1792–1798. PubMed

Gething PW, Smith DL, Patil AP, et al. Climate change and the global malaria recession. Nature. 2010;465:342–346. PubMed PMC

Lyke KE. Steady progress toward a malaria vaccine. Curr Opin Infect Dis. 2017;30(5):463–470. PubMed

Oryan A, Akbari M. Worldwide risk factors in leishmaniasis. Asian Pac J Trop Med. 2016;9(10):901–909. PubMed

Colacicco-Mayhugh MG, Masuoka PM, Grieco JP. Ecological niche model of Phlebotomus alexandri and P. papatasi (Diptera: psychodidae) in the Middle East. Int J Health Geogr. 2010;9:e2. PubMed PMC

Alvar J, Velez ID, Bern C, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7(5):e35671. PubMed PMC

WHO: Leishmaniasis [Internet] Geneva (Switzerland): World Health Organization [2018 Mar 14, cited 2018 Nov 21]. Available from: http://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis.

WHO: Control of the leishmaniases [Internet] Geneva (Switzerland): World Health Organization [2010, cited 2018 November21]. Available from: http://apps.who.int/iris/bitstream/10665/44412/1/WHO_TRS_949_eng.pdf.

Torpiano P, Pace D. Leishmaniasis: diagnostic issues in Europe. Expert Rev Anti-Infect Ther. 2015;13(9):1123–1138. PubMed

Ribeiro RR, Michalick MSM, Da Silva ME, et al. Canine leishmaniasis: an overview of the current status and strategies for control. BioMed Res Int. 2018;e3296893. PubMed PMC

Chobu M, Nkwengulila G, Mahande AM, et al. Direct and indirect effect of predators on Anopheles gambiae sensu stricto. Acta Trop. 2015;142:131–137. PubMed

Diabate A, Tripet F. Targeting male mosquito mating behaviour for malaria control. Parazit Vectors. 2015;8:e347. PubMed PMC

Lezaun J, Porter N. Containment and competition: transgenic animals in the One Health agenda. Soc Sci Med. 2015;129(SI):96–105. PubMed

Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet. 2016;17(3):146–159. PubMed

Anne-Sophie B, Benoit G. Multidrug resistant (or antimicrobial-resistant) pathogens - alternatives to new antibiotics? Swiss Med Wkly. 2017;147:w14553. PubMed

Cansizoglu MF, Toprak E. Fighting against evolution of antibiotic resistance by utilizing evolvable antimicrobial drugs. Curr Genet. 2017;63(6):973–976. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...