In Vitro and In Silico Acetylcholinesterase Inhibitory Activity of Thalictricavine and Canadine and Their Predicted Penetration across the Blood-Brain Barrier
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV 260 412 and Nr. 17/2012/UNCE
Charles University
PubMed
30959739
PubMed Central
PMC6480038
DOI
10.3390/molecules24071340
PII: molecules24071340
Knihovny.cz E-zdroje
- Klíčová slova
- (+)-canadine, (+)-thalictricavine, blood–brain barrier permeability, cholinesterases, kinetic study, molecular docking,
- MeSH
- acetylcholinesterasa chemie účinky léků MeSH
- alkaloidy chemie farmakologie MeSH
- Alzheimerova nemoc farmakoterapie enzymologie MeSH
- berberin analogy a deriváty chemie farmakologie MeSH
- biologický transport účinky léků MeSH
- butyrylcholinesterasa chemie účinky léků MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- Corydalis chemie MeSH
- disacharidy chemie farmakologie MeSH
- dusíkaté sloučeniny chemie farmakologie MeSH
- hematoencefalická bariéra účinky léků MeSH
- lidé MeSH
- molekulární modely MeSH
- počítačová simulace MeSH
- vazba proteinů účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- alkaloidy MeSH
- berberin MeSH
- butyrylcholinesterasa MeSH
- canadine MeSH Prohlížeč
- cholinesterasové inhibitory MeSH
- disacharidy MeSH
- dusíkaté sloučeniny MeSH
- thalictricoside MeSH Prohlížeč
In recent studies, several alkaloids acting as cholinesterase inhibitors were isolated from Corydalis cava (Papaveraceae). Inhibitory activities of (+)-thalictricavine (1) and (+)-canadine (2) on human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) were evaluated with the Ellman's spectrophotometric method. Molecular modeling was used to inspect the binding mode of compounds into the active site pocket of hAChE. The possible permeability of 1 and 2 through the blood⁻brain barrier (BBB) was predicted by the parallel artificial permeation assay (PAMPA) and logBB calculation. In vitro, 1 and 2 were found to be selective hAChE inhibitors with IC50 values of 0.38 ± 0.05 µM and 0.70 ± 0.07 µM, respectively, but against hBChE were considered inactive (IC50 values > 100 µM). Furthermore, both alkaloids demonstrated a competitive-type pattern of hAChE inhibition and bind, most probably, in the same AChE sub-site as its substrate. In silico docking experiments allowed us to confirm their binding poses into the active center of hAChE. Based on the PAMPA and logBB calculation, 2 is potentially centrally active, but for 1 BBB crossing is limited. In conclusion, 1 and 2 appear as potential lead compounds for the treatment of Alzheimer's disease.
Zobrazit více v PubMed
Lleó A. Current Therapeutic Options for Alzheimer’s Disease. Curr. Genom. 2007;8:550–558. doi: 10.2174/138920207783769549. PubMed DOI PMC
Park S.-Y. Potential therapeutic agents against Alzheimer’s disease from natural sources. Arch. Pharm. Res. 2010;33:1589–1609. doi: 10.1007/s12272-010-1010-y. PubMed DOI
Rasool M., Malik A., Qureshi M.S., Manan A., Pushparaj P.N., Asif M., Qazi M.H., Qazi A.M., Kamal M.A., Gan S.H., Sheikh I.A. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid. Based Complement. Alternat. Med. 2014;2014:979730. doi: 10.1155/2014/979730. PubMed DOI PMC
Lahiri D.K., Farlow M.R., Greig N.H., Sambamurti K. Current drug targets for Alzheimer’s disease treatment. Drug Dev. Res. 2002;56:267–281. doi: 10.1002/ddr.10081. DOI
Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A Review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s Disease. Prim. Care Companion CNS Disord. 2013;15:12r01412. doi: 10.4088/PCC.12r01412. PubMed DOI PMC
Ehret M.J., Chamberlin K.W. Current practices in the treatment of Alzheimer disease: Where is the evidence after the Phase III trials? Clin. Ther. 2015;37:1604–1616. doi: 10.1016/j.clinthera.2015.05.510. PubMed DOI
Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology. 2014;76:27–50. doi: 10.1016/j.neuropharm.2013.07.004. PubMed DOI
Schneider L.S., Mangialasche F., Andreasen N., Feldman H., Giacobini E., Jones R., Mantua V., Mecocci P., Pani L., Winblad B., et al. Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J. Intern. Med. 2014;275:251–283. doi: 10.1111/joim.12191. PubMed DOI PMC
Zemek F., Drtinova L., Nepovimova E., Sepsova V., Korabecny J., Klimes J., Kuca K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014;13:759–774. PubMed
Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol. Res. 2004;50:433–440. doi: 10.1016/j.phrs.2003.11.017. PubMed DOI
Kandiah N., Pai M.-C., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging. 2017;12:697–707. doi: 10.2147/CIA.S129145. PubMed DOI PMC
Zhang H. New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacol. Sin. 2012;33:1170–1175. doi: 10.1038/aps.2012.128. PubMed DOI PMC
Zhang J.-M., Hu G.-Y. Huperzine A, a nootropic alkaloid, inhibits N-methyl-D-aspartate-induced current in rat dissociated hippocampal neurons. Neuroscience. 2001;105:663–669. doi: 10.1016/S0306-4522(01)00206-8. PubMed DOI
Hostettmann K., Borloz A., Urbain A., Marston A. Natural product inhibitors of acetylcholinesterase. Curr. Org. Chem. 2006;10:825–847. doi: 10.2174/138527206776894410. DOI
Mukherjee P.K., Kumar V., Mal M., Houghton P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine. 2007;14:289–300. doi: 10.1016/j.phymed.2007.02.002. PubMed DOI
Houghton P.J., Ren Y., Howes M.-J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006;23:181–199. doi: 10.1039/b508966m. PubMed DOI
Chlebek J., Macáková K., Cahlíkovi L., Kurfürst M., Kunes J., Opletal L. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava (Fumariaceae) Nat. Prod. Commun. 2011;6:607–610. doi: 10.1177/1934578X1100600507. PubMed DOI
Adsersen A., Kjølbye A., Dall O., Jäger A.K. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava Schweigg. & Kort. J. Ethnopharmacol. 2007;113:179–182. PubMed
Adsersen A., Gauguin B., Gudiksen L., Jäger A.K. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 2006;104:418–422. doi: 10.1016/j.jep.2005.09.032. PubMed DOI
Zeng H., Wu X. Alzheimer’s disease drug development based on computer-aided drug design. Eur. J. Med. Chem. 2016;121:851–863. doi: 10.1016/j.ejmech.2015.08.039. PubMed DOI
Bermudez-Lugo J.A., Rosales-Hernandez M.C., Deeb O., Trujillo-Ferrara J., Correa-Basurto J. In silico methods to assist drug developers in acetylcholinesterase inhibitor design. Curr. Med. Chem. 2011;18:1122–1136. doi: 10.2174/092986711795029681. PubMed DOI
Ortiz J.E., Pigni N.B., Andujar S.A., Roitman G., Suvire F.D., Enriz R.D., Tapia A., Bastida J., Feresin G.E. Alkaloids from Hippeastrum argentinum and their cholinesterase-inhibitory activities: An in vitro and in silico study. J. Nat. Prod. 2016;79:1241–1248. doi: 10.1021/acs.jnatprod.5b00785. PubMed DOI
Castillo-Ordóñez W.O., Tamarozzi E.R., da Silva G.M., Aristizabal-Pachón A.F., Sakamoto-Hojo E.T., Takahashi C.S., Giuliatti S. Exploration of the acetylcholinesterase inhibitory activity of some alkaloids from Amaryllidaceae family by molecular docking in silico. Neurochem. Res. 2017;42:2826–2830. doi: 10.1007/s11064-017-2295-8. PubMed DOI
Cortes N., Alvarez R., Osorio E.H., Alzate F., Berkov S., Osorio E. Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants. J. Pharm. Biomed. Anal. 2015;102:222–228. doi: 10.1016/j.jpba.2014.09.022. PubMed DOI
Adhami H.R., Linder T., Kaehlig H., Schuster D., Zehl M., Krenn L. Catechol alkenyls from Semecarpus anacardium: Acetylcholinesterase inhibition and binding mode predictions. J. Ethnopharmacol. 2012;139:142–148. doi: 10.1016/j.jep.2011.10.032. PubMed DOI
da Silva V.B., de Andrade P., Kawano D.F., Morais P.A.B., de Almeida J.R., Carvalho I., Taft C.A., da Silva C.H.T.D.P. In silico design and search for acetylcholinesterase inhibitors in Alzheimer’s disease with a suitable pharmacokinetic profile and low toxicity. Future Med. Chem. 2011;3:947–960. doi: 10.4155/fmc.11.67. PubMed DOI
Pardridge W.M. Crossing the blood-brain barrier: are we getting it right? Drug Discov. Today. 2001;6:1–2. doi: 10.1016/S1359-6446(00)01583-X. PubMed DOI
Abbott N.J. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis. 2013;36:437–449. doi: 10.1007/s10545-013-9608-0. PubMed DOI
van Asperen J., Mayer U., van Tellingen O., Beijnen J.H. The functional role of P-glycoprotein in the blood-brain barrier. J. Pharm. Sci. 1997;86:881–884. doi: 10.1021/js9701364. PubMed DOI
Nielsen P.A., Andersson O., Hansen S.H., Simonsen K.B., Andersson G. Models for predicting blood-brain barrier permeation. Drug Discov. Today. 2011;16:472–475. doi: 10.1016/j.drudis.2011.04.004. PubMed DOI
Di L., Kerns E.H., Fan K., McConnell O.J., Carter G.T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003;38:223–232. doi: 10.1016/S0223-5234(03)00012-6. PubMed DOI
Cahlíková L., Hulová L., Hrabinová M., Chlebek J., Hošťálková A., Adamcová M., Šafratová M., Jun D., Opletal L., Ločárek M., et al. Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fitoterapia. 2015;103:192–196. doi: 10.1016/j.fitote.2015.04.004. PubMed DOI
Slavík J., Slavíková L. Alkaloids from Corydalis cava (L.) SCHW. et KOERTE. Collect. Czech. Chem. Commun. 1979;44:2261–2274. doi: 10.1135/cccc19792261. DOI
Guo Z., Cai R., Su H., Li Y. Alkaloids in processed rhizoma Corydalis and crude rhizoma Corydalis analyzed by GC/MS. J. Anal. Methods Chem. 2014;2014:281342. doi: 10.1155/2014/281342. PubMed DOI PMC
guang Ma W., Fukushi Y., Tahara S. Fungitoxic alkaloids from Hokkaido Corydalis species. Fitoterapia. 1999;70:258–265. doi: 10.1016/S0367-326X(99)00045-3. PubMed DOI
Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Hošťálková A., Kuneš J., Macáková K., Hrabinová M., Opletal L. Alkaloids from Hydrastidis canadensis and their cholinesterase and prolyl oligopeptidase inhibitory. Ceska Slov. Farm. 2015;64:41–43. PubMed
Francis P.T., Palmer A.M., Snape M., Wilcock G.K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry. 1999;66:137–147. doi: 10.1136/jnnp.66.2.137. PubMed DOI PMC
Chlebek J., Doskocil I., Hulcová D., Breiterová K., Šafratová M., Havelek R., Habartová K., Hošt’álková A., Volštátová T., Cahlíková L. Cytotoxicity of naturally occurring isoquinoline alkaloids of different structural types. Nat. Prod. Commun. 2016;11:753–756. doi: 10.1177/1934578X1601100614. PubMed DOI
Zhu J.P. Chinese Materia Medica: Chemistry, Pharmacology and Applications. 1st ed. CRC Press; Boca Raton, FL, USA: 1998.
Subaiea G.M., Aljofan M., Devadasu V.R., Alshammari T.M. Acute toxicity testing of newly discovered potential antihepatitis B virus agents of plant origin. Asian J. Pharm. Clin. Res. 2017;10:210–213.
Lineweaver H., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI
Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI
Forli S., Huey R., Pique M.E., Sanner M., Goodsell D.S., Olson A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016;11:905–919. doi: 10.1038/nprot.2016.051. PubMed DOI PMC
Crivori P., Cruciani G., Carrupt P.A., Testa B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J. Med. Chem. 2000;43:2204–2216. doi: 10.1021/jm990968+. PubMed DOI
Cahlíková L., Pérez D.I., Štěpánková Š., Chlebek J., Šafratová M., Hošt’álková A., Opletal L. In vitro inhibitory effects of 8-O-demethylmaritidine and undulatine on acetylcholinesterase and their predicted penetration across the blood–brain barrier. J. Nat. Prod. 2015;78:1189–1192. doi: 10.1021/acs.jnatprod.5b00191. PubMed DOI
Muehlbacher M., Spitzer G.M., Liedl K.R., Kornhuber J. Qualitative prediction of blood–brain barrier permeability on a large and refined dataset. J. Comput. Aided Mol. Des. 2011;25:1095–1106. doi: 10.1007/s10822-011-9478-1. PubMed DOI PMC
Abraham M.H., Takács-Novák K., Mitchell R.C. On the partition of ampholytes: Application to blood–brain distribution. J. Pharm. Sci. 1997;86:310–315. doi: 10.1021/js960328j. PubMed DOI
Carpenter T.S., Kirshner D.A., Lau E.Y., Wong S.E., Nilmeier J.P., Lightstone F.C. A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys. J. 2014;107:630–641. doi: 10.1016/j.bpj.2014.06.024. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Liu B., Wang L., Jin Y.-H. An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man. Cybern. B Cybern. 2007;37:18–27. doi: 10.1109/TSMCB.2006.883272. PubMed DOI