In Vitro and In Silico Acetylcholinesterase Inhibitory Activity of Thalictricavine and Canadine and Their Predicted Penetration across the Blood-Brain Barrier

. 2019 Apr 05 ; 24 (7) : . [epub] 20190405

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30959739

Grantová podpora
SVV 260 412 and Nr. 17/2012/UNCE Charles University

In recent studies, several alkaloids acting as cholinesterase inhibitors were isolated from Corydalis cava (Papaveraceae). Inhibitory activities of (+)-thalictricavine (1) and (+)-canadine (2) on human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) were evaluated with the Ellman's spectrophotometric method. Molecular modeling was used to inspect the binding mode of compounds into the active site pocket of hAChE. The possible permeability of 1 and 2 through the blood⁻brain barrier (BBB) was predicted by the parallel artificial permeation assay (PAMPA) and logBB calculation. In vitro, 1 and 2 were found to be selective hAChE inhibitors with IC50 values of 0.38 ± 0.05 µM and 0.70 ± 0.07 µM, respectively, but against hBChE were considered inactive (IC50 values > 100 µM). Furthermore, both alkaloids demonstrated a competitive-type pattern of hAChE inhibition and bind, most probably, in the same AChE sub-site as its substrate. In silico docking experiments allowed us to confirm their binding poses into the active center of hAChE. Based on the PAMPA and logBB calculation, 2 is potentially centrally active, but for 1 BBB crossing is limited. In conclusion, 1 and 2 appear as potential lead compounds for the treatment of Alzheimer's disease.

Zobrazit více v PubMed

Lleó A. Current Therapeutic Options for Alzheimer’s Disease. Curr. Genom. 2007;8:550–558. doi: 10.2174/138920207783769549. PubMed DOI PMC

Park S.-Y. Potential therapeutic agents against Alzheimer’s disease from natural sources. Arch. Pharm. Res. 2010;33:1589–1609. doi: 10.1007/s12272-010-1010-y. PubMed DOI

Rasool M., Malik A., Qureshi M.S., Manan A., Pushparaj P.N., Asif M., Qazi M.H., Qazi A.M., Kamal M.A., Gan S.H., Sheikh I.A. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evid. Based Complement. Alternat. Med. 2014;2014:979730. doi: 10.1155/2014/979730. PubMed DOI PMC

Lahiri D.K., Farlow M.R., Greig N.H., Sambamurti K. Current drug targets for Alzheimer’s disease treatment. Drug Dev. Res. 2002;56:267–281. doi: 10.1002/ddr.10081. DOI

Nordberg A., Ballard C., Bullock R., Darreh-Shori T., Somogyi M. A Review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s Disease. Prim. Care Companion CNS Disord. 2013;15:12r01412. doi: 10.4088/PCC.12r01412. PubMed DOI PMC

Ehret M.J., Chamberlin K.W. Current practices in the treatment of Alzheimer disease: Where is the evidence after the Phase III trials? Clin. Ther. 2015;37:1604–1616. doi: 10.1016/j.clinthera.2015.05.510. PubMed DOI

Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology. 2014;76:27–50. doi: 10.1016/j.neuropharm.2013.07.004. PubMed DOI

Schneider L.S., Mangialasche F., Andreasen N., Feldman H., Giacobini E., Jones R., Mantua V., Mecocci P., Pani L., Winblad B., et al. Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J. Intern. Med. 2014;275:251–283. doi: 10.1111/joim.12191. PubMed DOI PMC

Zemek F., Drtinova L., Nepovimova E., Sepsova V., Korabecny J., Klimes J., Kuca K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014;13:759–774. PubMed

Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol. Res. 2004;50:433–440. doi: 10.1016/j.phrs.2003.11.017. PubMed DOI

Kandiah N., Pai M.-C., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging. 2017;12:697–707. doi: 10.2147/CIA.S129145. PubMed DOI PMC

Zhang H. New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacol. Sin. 2012;33:1170–1175. doi: 10.1038/aps.2012.128. PubMed DOI PMC

Zhang J.-M., Hu G.-Y. Huperzine A, a nootropic alkaloid, inhibits N-methyl-D-aspartate-induced current in rat dissociated hippocampal neurons. Neuroscience. 2001;105:663–669. doi: 10.1016/S0306-4522(01)00206-8. PubMed DOI

Hostettmann K., Borloz A., Urbain A., Marston A. Natural product inhibitors of acetylcholinesterase. Curr. Org. Chem. 2006;10:825–847. doi: 10.2174/138527206776894410. DOI

Mukherjee P.K., Kumar V., Mal M., Houghton P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine. 2007;14:289–300. doi: 10.1016/j.phymed.2007.02.002. PubMed DOI

Houghton P.J., Ren Y., Howes M.-J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006;23:181–199. doi: 10.1039/b508966m. PubMed DOI

Chlebek J., Macáková K., Cahlíkovi L., Kurfürst M., Kunes J., Opletal L. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava (Fumariaceae) Nat. Prod. Commun. 2011;6:607–610. doi: 10.1177/1934578X1100600507. PubMed DOI

Adsersen A., Kjølbye A., Dall O., Jäger A.K. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava Schweigg. & Kort. J. Ethnopharmacol. 2007;113:179–182. PubMed

Adsersen A., Gauguin B., Gudiksen L., Jäger A.K. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 2006;104:418–422. doi: 10.1016/j.jep.2005.09.032. PubMed DOI

Zeng H., Wu X. Alzheimer’s disease drug development based on computer-aided drug design. Eur. J. Med. Chem. 2016;121:851–863. doi: 10.1016/j.ejmech.2015.08.039. PubMed DOI

Bermudez-Lugo J.A., Rosales-Hernandez M.C., Deeb O., Trujillo-Ferrara J., Correa-Basurto J. In silico methods to assist drug developers in acetylcholinesterase inhibitor design. Curr. Med. Chem. 2011;18:1122–1136. doi: 10.2174/092986711795029681. PubMed DOI

Ortiz J.E., Pigni N.B., Andujar S.A., Roitman G., Suvire F.D., Enriz R.D., Tapia A., Bastida J., Feresin G.E. Alkaloids from Hippeastrum argentinum and their cholinesterase-inhibitory activities: An in vitro and in silico study. J. Nat. Prod. 2016;79:1241–1248. doi: 10.1021/acs.jnatprod.5b00785. PubMed DOI

Castillo-Ordóñez W.O., Tamarozzi E.R., da Silva G.M., Aristizabal-Pachón A.F., Sakamoto-Hojo E.T., Takahashi C.S., Giuliatti S. Exploration of the acetylcholinesterase inhibitory activity of some alkaloids from Amaryllidaceae family by molecular docking in silico. Neurochem. Res. 2017;42:2826–2830. doi: 10.1007/s11064-017-2295-8. PubMed DOI

Cortes N., Alvarez R., Osorio E.H., Alzate F., Berkov S., Osorio E. Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants. J. Pharm. Biomed. Anal. 2015;102:222–228. doi: 10.1016/j.jpba.2014.09.022. PubMed DOI

Adhami H.R., Linder T., Kaehlig H., Schuster D., Zehl M., Krenn L. Catechol alkenyls from Semecarpus anacardium: Acetylcholinesterase inhibition and binding mode predictions. J. Ethnopharmacol. 2012;139:142–148. doi: 10.1016/j.jep.2011.10.032. PubMed DOI

da Silva V.B., de Andrade P., Kawano D.F., Morais P.A.B., de Almeida J.R., Carvalho I., Taft C.A., da Silva C.H.T.D.P. In silico design and search for acetylcholinesterase inhibitors in Alzheimer’s disease with a suitable pharmacokinetic profile and low toxicity. Future Med. Chem. 2011;3:947–960. doi: 10.4155/fmc.11.67. PubMed DOI

Pardridge W.M. Crossing the blood-brain barrier: are we getting it right? Drug Discov. Today. 2001;6:1–2. doi: 10.1016/S1359-6446(00)01583-X. PubMed DOI

Abbott N.J. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis. 2013;36:437–449. doi: 10.1007/s10545-013-9608-0. PubMed DOI

van Asperen J., Mayer U., van Tellingen O., Beijnen J.H. The functional role of P-glycoprotein in the blood-brain barrier. J. Pharm. Sci. 1997;86:881–884. doi: 10.1021/js9701364. PubMed DOI

Nielsen P.A., Andersson O., Hansen S.H., Simonsen K.B., Andersson G. Models for predicting blood-brain barrier permeation. Drug Discov. Today. 2011;16:472–475. doi: 10.1016/j.drudis.2011.04.004. PubMed DOI

Di L., Kerns E.H., Fan K., McConnell O.J., Carter G.T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003;38:223–232. doi: 10.1016/S0223-5234(03)00012-6. PubMed DOI

Cahlíková L., Hulová L., Hrabinová M., Chlebek J., Hošťálková A., Adamcová M., Šafratová M., Jun D., Opletal L., Ločárek M., et al. Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fitoterapia. 2015;103:192–196. doi: 10.1016/j.fitote.2015.04.004. PubMed DOI

Slavík J., Slavíková L. Alkaloids from Corydalis cava (L.) SCHW. et KOERTE. Collect. Czech. Chem. Commun. 1979;44:2261–2274. doi: 10.1135/cccc19792261. DOI

Guo Z., Cai R., Su H., Li Y. Alkaloids in processed rhizoma Corydalis and crude rhizoma Corydalis analyzed by GC/MS. J. Anal. Methods Chem. 2014;2014:281342. doi: 10.1155/2014/281342. PubMed DOI PMC

guang Ma W., Fukushi Y., Tahara S. Fungitoxic alkaloids from Hokkaido Corydalis species. Fitoterapia. 1999;70:258–265. doi: 10.1016/S0367-326X(99)00045-3. PubMed DOI

Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Hošťálková A., Kuneš J., Macáková K., Hrabinová M., Opletal L. Alkaloids from Hydrastidis canadensis and their cholinesterase and prolyl oligopeptidase inhibitory. Ceska Slov. Farm. 2015;64:41–43. PubMed

Francis P.T., Palmer A.M., Snape M., Wilcock G.K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry. 1999;66:137–147. doi: 10.1136/jnnp.66.2.137. PubMed DOI PMC

Chlebek J., Doskocil I., Hulcová D., Breiterová K., Šafratová M., Havelek R., Habartová K., Hošt’álková A., Volštátová T., Cahlíková L. Cytotoxicity of naturally occurring isoquinoline alkaloids of different structural types. Nat. Prod. Commun. 2016;11:753–756. doi: 10.1177/1934578X1601100614. PubMed DOI

Zhu J.P. Chinese Materia Medica: Chemistry, Pharmacology and Applications. 1st ed. CRC Press; Boca Raton, FL, USA: 1998.

Subaiea G.M., Aljofan M., Devadasu V.R., Alshammari T.M. Acute toxicity testing of newly discovered potential antihepatitis B virus agents of plant origin. Asian J. Pharm. Clin. Res. 2017;10:210–213.

Lineweaver H., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI

Cheung J., Rudolph M.J., Burshteyn F., Cassidy M.S., Gary E.N., Love J., Franklin M.C., Height J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012;55:10282–10286. doi: 10.1021/jm300871x. PubMed DOI

Forli S., Huey R., Pique M.E., Sanner M., Goodsell D.S., Olson A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016;11:905–919. doi: 10.1038/nprot.2016.051. PubMed DOI PMC

Crivori P., Cruciani G., Carrupt P.A., Testa B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J. Med. Chem. 2000;43:2204–2216. doi: 10.1021/jm990968+. PubMed DOI

Cahlíková L., Pérez D.I., Štěpánková Š., Chlebek J., Šafratová M., Hošt’álková A., Opletal L. In vitro inhibitory effects of 8-O-demethylmaritidine and undulatine on acetylcholinesterase and their predicted penetration across the blood–brain barrier. J. Nat. Prod. 2015;78:1189–1192. doi: 10.1021/acs.jnatprod.5b00191. PubMed DOI

Muehlbacher M., Spitzer G.M., Liedl K.R., Kornhuber J. Qualitative prediction of blood–brain barrier permeability on a large and refined dataset. J. Comput. Aided Mol. Des. 2011;25:1095–1106. doi: 10.1007/s10822-011-9478-1. PubMed DOI PMC

Abraham M.H., Takács-Novák K., Mitchell R.C. On the partition of ampholytes: Application to blood–brain distribution. J. Pharm. Sci. 1997;86:310–315. doi: 10.1021/js960328j. PubMed DOI

Carpenter T.S., Kirshner D.A., Lau E.Y., Wong S.E., Nilmeier J.P., Lightstone F.C. A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys. J. 2014;107:630–641. doi: 10.1016/j.bpj.2014.06.024. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Liu B., Wang L., Jin Y.-H. An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man. Cybern. B Cybern. 2007;37:18–27. doi: 10.1109/TSMCB.2006.883272. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...