Tailoring Performance, Damping, and Surface Properties of Magnetorheological Elastomers via Particle-Grafting Technology
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
17-24730S
Grantová Agentura České Republiky
IGA/CPS/2017/004
Internal Grant Agency of Tomas Bata University in Zlín
LO1504
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/19.0409
Operational Program Research and Development for Innovations
PubMed
30961336
PubMed Central
PMC6401872
DOI
10.3390/polym10121411
PII: polym10121411
Knihovny.cz E-resources
- Keywords
- ATRP, damping, magnetorheology, polymer grafting, silicone elastomer, surface properties,
- Publication type
- Journal Article MeSH
A novel concept based on advanced particle-grafting technology to tailor performance, damping, and surface properties of the magnetorheological elastomers (MREs) is introduced. In this work, the carbonyl iron (CI) particles grafted with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) of two different molecular weights were prepared via surface-initiated atom transfer radical polymerization and the relations between the PHEMATMS chain lengths and the MREs properties were investigated. The results show that the magnetorheological performance and damping capability were remarkably influenced by different interaction between polydimethylsiloxane chains as a matrix and PHEMATMS grafts due to their different length. The MRE containing CI grafted with PHEMATMS of higher molecular weight exhibited a greater plasticizing effect and hence both a higher relative magnetorheological effect and enhanced damping capability were observed. Besides bulk MRE properties, the PHEMATMS modifications influenced also field-induced surface activity of the MRE sheets, which manifested as notable changes in surface roughness.
See more in PubMed
Boczkowska A., Awietjan S.F., Wroblewski R. Microstructure-property relationships of urethane magnetorheological elastomers. Smart Mater. Struct. 2007;16:1924–1930. doi: 10.1088/0964-1726/16/5/049. DOI
Cvek M., Mrlik M., Pavlinek V. A rheological evaluation of steady shear magnetorheological flow behavior using three-parameter viscoplastic models. J. Rheol. 2016;60:687–694. doi: 10.1122/1.4954249. DOI
de Vicente J., Klingenberg D.J., Hidalgo-Alvarez R. Magnetorheological fluids: A review. Soft Matter. 2011;7:3701–3710. doi: 10.1039/c0sm01221a. DOI
Cvek M., Moucka R., Sedlacik M., Pavlinek V. Electromagnetic, magnetorheological and stability properties of polysiloxane elastomers based on silane-modified carbonyl iron particles with enhanced wettability. Smart Mater. Struct. 2017;26:105003. doi: 10.1088/1361-665X/aa85c5. DOI
Li Y.C., Li J.C., Li W.H., Du H.P. A state-of-the-art review on magnetorheological elastomer devices. Smart Mater. Struct. 2014;23:123001. doi: 10.1088/0964-1726/23/12/123001. DOI
Park B.J., Fang F.F., Choi H.J. Magnetorheology: Materials and application. Soft Matter. 2010;6:5246–5253. doi: 10.1039/c0sm00014k. DOI
Bose H., Rabindranath R., Ehrlich J. Soft magnetorheological elastomers as new actuators for valves. J. Intell. Mater. Syst. Struct. 2012;23:989–994. doi: 10.1177/1045389X11433498. DOI
Dyniewicz B., Bajkowski J.M., Bajer C.I. Semi-active control of a sandwich beam partially filled with magnetorheological elastomer. Mech. Syst. Signal Process. 2015;60–61:695–705. doi: 10.1016/j.ymssp.2015.01.032. DOI
Choi S.B., Li W.H., Yu M., Du H.P., Fu J., Do P.X. State of the art of control schemes for smart systems featuring magneto-rheological materials. Smart Mater. Struct. 2016;25:043001. doi: 10.1088/0964-1726/25/4/043001. DOI
Khimi S.R., Pickering K.L. Comparison of dynamic properties of magnetorheological elastomers with existing antivibration rubbers. Compos. Part B. 2015;83:175–183. doi: 10.1016/j.compositesb.2015.08.033. DOI
Zrinyi M., Szabo D. Muscular contraction mimiced by magnetic gels. Int. J. Mod. Phys. B. 2001;15:557–563. doi: 10.1142/S0217979201005015. DOI
Behrooz M., Gordaninejad F. A flexible micro fluid transport system featuring magnetorheological elastomer. Smart Mater. Struct. 2016;25:025011. doi: 10.1088/0964-1726/25/2/025011. DOI
Cvek M., Moucka R., Sedlacik M., Babayan V., Pavlinek V. Enhancement of radio-absorbing properties and thermal conductivity of polysiloxane-based magnetorheological elastomers by the alignment of filler particles. Smart Mater. Struct. 2017;26:095005. doi: 10.1088/1361-665X/aa7ef6. DOI
Keshoju K., Sun L. Mechanical characterization of magnetic nanowire-polydimethylsiloxane composites. J. Appl. Phys. 2009;105:023515. doi: 10.1063/1.3068173. DOI
Bica I., Anitas E.M., Bunoiu M., Vatzulik B., Juganaru I. Hybrid magnetorheological elastomer: Influence of magnetic field and compression pressure on its electrical conductivity. J. Ind. Eng. Chem. 2014;20:3994–3999. doi: 10.1016/j.jiec.2013.12.102. DOI
Khimi S.R., Pickering K.L., Mace B.R. Dynamic properties of magnetorheological elastomers based on iron sand and natural rubber. J. Appl. Polym. Sci. 2015;132:41506. doi: 10.1002/app.41506. DOI
Chertovich A.V., Stepanov G.V., Kramarenko E.Y., Khokhlov A.R. New composite elastomers with giant magnetic response. Macromol. Mater. Eng. 2010;295:336–341. doi: 10.1002/mame.200900301. DOI
Fan Y.C., Gong X.L., Xuan S.H., Qin L.J., Li X.F. Effect of cross-link density of the matrix on the damping properties of magnetorheological elastomers. Ind. Eng. Chem. Res. 2013;52:771–778. doi: 10.1021/ie302536e. DOI
Plachy T., Kratina O., Sedlacik M. Porous magnetic materials based on EPDM rubber filled with carbonyl iron particles. Compos. Struct. 2018;192:126–130. doi: 10.1016/j.compstruct.2018.02.095. DOI
Fan Y.C., Gong X.L., Jiang W.Q., Zhang W., Wei B., Li W.H. Effect of maleic anhydride on the damping property of magnetorheological elastomers. Smart Mater. Struct. 2010;19:055015. doi: 10.1088/0964-1726/19/5/055015. DOI
Gong X.L., Fan Y.C., Xuan S.H., Xu Y.G., Peng C. Control of the damping properties of magnetorheological elastomers by using polycaprolactone as a temperature-controlling component. Ind. Eng. Chem. Res. 2012;51:6395–6403. doi: 10.1021/ie300317b. DOI
Khairi M.H.A., Mazlan S.A., Ubaidillah, Ahmad K.Z.K., Choi S.B., Aziz S.A.A., Yunus N.A. The field-dependent complex modulus of magnetorheological elastomers consisting of sucrose acetate isobutyrate ester. J. Intell. Mater. Syst. Struct. 2017;28:1993–2004. doi: 10.1177/1045389X16682844. DOI
Rabindranath R., Bose H. On the mobility of iron particles embedded in elastomeric silicone matrix. In: Unal H.I., editor. Proceedings of the 13th International Conference on Electrorheological Fluids and Magnetorheological Suspensions; Ankara, Turkey. 2–6 July 2012; Bristol, UK: Iop Publishing Ltd.; 2013. DOI
Yang D.L., Pacheco R., Henderson K., Hubbard K., Devlin D. Diffusion and sorption of nitroplasticizers in vinyl copolymer elastomer and its composites. J. Appl. Polym. Sci. 2014;131:40729. doi: 10.1002/app.40729. DOI
Ocalan M., McKinley G.H. High-flux magnetorheology at elevated temperatures. Rheol. Acta. 2013;52:623–641. doi: 10.1007/s00397-013-0708-4. DOI
Cvek M., Mrlik M., Ilcikova M., Mosnacek J., Munster L., Pavlinek V. Synthesis of silicone elastomers containing silyl-based polymer grafted carbonyl iron particles: An efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI
Cvek M., Mrlik M., Ilcikova M., Plachy T., Sedlacik M., Mosnacek J., Pavlinek V. A facile controllable coating of carbonyl iron particles with poly(glycidyl methacrylate): A tool for adjusting MR response and stability properties. J. Mater. Chem. C. 2015;3:4646–4656. doi: 10.1039/C5TC00319A. DOI
Tan R.X., Fan Z.Q., Xie Z.Y., Zhang M.Y., He K.J., Huang Q.H. Fabrication of large-sized high density bulk isotropic pyrocarbon materials of a special composite microstructure by fixed-bed chemical vapor deposition. Carbon. 2016;101:439–448. doi: 10.1016/j.carbon.2016.02.019. DOI
Sorokin V.V., Stepanov G.V., Shamonin M., Monkman G.J., Khokhlov A.R., Kramarenko E.Y. Hysteresis of the viscoelastic properties and the normal force in magnetically and mechanically soft magnetoactive elastomers: Effects of filler composition, strain amplitude and magnetic field. Polymer. 2015;76:191–202. doi: 10.1016/j.polymer.2015.08.040. DOI
Matyjaszewski K. Atom Transfer Radical Polymerization (ATRP): Current status and future perspectives. Macromolecules. 2012;45:4015–4039. doi: 10.1021/ma3001719. DOI
Mousazadeh H., Safa K.D., Ghadari R. Synthesis, spectroscopic characterization, and DFT studies of 1,2,3-triazole-based organosilicon compounds. J. Molec. Struct. 2018;1167:200–208. doi: 10.1016/j.molstruc.2018.03.072. DOI
Cvek M., Mrlik M., Ilcikova M., Mosnacek J., Babayan V., Kucekova Z., Humpolicek P., Pavlinek V. The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv. 2015;5:72816–72824. doi: 10.1039/C5RA11968E. DOI
Kim Y.H., Ahn W.J., Choi H.J., Seo Y. Fabrication and magnetic stimuli-response of polydopamine-coated core-shell structured carbonyl iron microspheres. Colloid Polym. Sci. 2016;294:329–337. doi: 10.1007/s00396-015-3786-2. DOI
de Vicente J., Bossis G., Lacis S., Guyot M. Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions. J. Magn. Magn. Mater. 2002;251:100–108. doi: 10.1016/S0304-8853(02)00484-5. DOI
Stepanov G.V., Borin D.Y., Raikher Y.L., Melenev P.V., Perov N.S. Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J. Phys. Condens. Matter. 2008;20:204121. doi: 10.1088/0953-8984/20/20/204121. PubMed DOI
Bodnaruk A.V., Brunhuber A., Kalita V.M., Kulyk M.M., Snarskii A.A., Lozenko A.F., Ryabchenko S.M., Shamonin M. Temperature-dependent magnetic properties of a magnetoactive elastomer: Immobilization of the soft-magnetic filler. J. Appl. Phys. 2018;123:115118. doi: 10.1063/1.5023891. DOI
Abshinova M.A., Kazantseva N.E., Saha P., Sapurina I., Kovarova J., Stejskal J. The enhancement of the oxidation resistance of carbonyl iron by polyaniline coating and consequent changes in electromagnetic properties. Polym. Degrad. Stab. 2008;93:1826–1831. doi: 10.1016/j.polymdegradstab.2008.07.008. DOI
Konig R., Muller S., Dinnebier R.E., Hinrichsen B., Muller P., Ribbens A., Hwang J., Liebscher R., Etter M., Pistidda C. The crystal structures of carbonyl iron powde—Revised using in situ synchrotron XRPD. Z. Kristallogr. Cryst. Mater. 2017;232:835–842. doi: 10.1515/zkri-2017-2067. DOI
Plachy T., Kutalkova E., Sedlacik M., Vesel A., Masar M., Kuritka I. Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions. J. Ind. Eng. Chem. 2018;66:362–369. doi: 10.1016/j.jiec.2018.06.002. DOI
Sedlacik M., Mrlik M., Babayan V., Pavlinek V. Magnetorheological elastomers with efficient electromagnetic shielding. Compos. Struct. 2016;135:199–204. doi: 10.1016/j.compstruct.2015.09.037. DOI
Fu S.Y., Feng X.Q., Lauke B., Mai Y.W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI
Gorodov V.V., Kostrov S.A., Kamyshinskii R.A., Kramarenko E.Y., Muzafarov A.M. Modification of carbonyl iron particles by carboxyl-containing polydimethylsiloxanes. Russ. Chem. Bull. 2018;67:1639–1647. doi: 10.1007/s11172-018-2271-8. DOI
Laun H.M., Gabriel C., Schmidt G. Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T. J. Non-Newton. Fluid Mech. 2008;148:47–56. doi: 10.1016/j.jnnfm.2007.04.019. DOI
Poojary U.R., Hegde S., Gangadharan K.V. Experimental investigation on the effect of carbon nanotube additive on the field-induced viscoelastic properties of magnetorheological elastomer. J. Mater. Sci. 2018;53:4229–4241. doi: 10.1007/s10853-017-1883-y. DOI
Zhou G.Y. Shear properties of a magnetorheological elastomer. Smart Mater. Struct. 2003;12:139–146. doi: 10.1088/0964-1726/12/1/316. DOI
Shuib R.K., Pickering K.L. Investigation and modelling of damping mechanisms of magnetorheological elastomers. J. Appl. Polym. Sci. 2016;133:43247. doi: 10.1002/app.43247. DOI
Schoeck G. Internal friction due to precipitation. Phys. Status Solidi. 1969;32:651–658. doi: 10.1002/pssb.19690320216. DOI
Lavernia E.J., Perez R.J., Zhang J. Damping behavior of discontinuously reinforced al-alloy metal-matrix composites. Metall. Mater. Trans. A. 1995;26:2803–2818. doi: 10.1007/BF02669639. DOI
Aziz S.A.A., Ubaidillah, Mazlan S.A., Ismail N.I.N., Choi S.B. Implementation of functionalized multiwall carbon nanotubes on magnetorheological elastomer. J. Mater. Sci. 2018;53:10122–10134. doi: 10.1007/s10853-018-2315-3. DOI
Jolly M.R., Carlson J.D., Munoz B.C. A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 1996;5:607–614. doi: 10.1088/0964-1726/5/5/009. DOI
Khimi S.R., Pickering K.L. The effect of silane coupling agent on the dynamic mechanical properties of iron sand/ natural rubber magnetorheological elastomers. Compos. Part B. 2016;90:115–125. doi: 10.1016/j.compositesb.2015.11.042. DOI
Moucka R., Sedlacik M., Cvek M. Dielectric properties of magnetorheological elastomers with different microstructure. Appl. Phys. Lett. 2018;122:112901. doi: 10.1063/1.5021750. DOI
Pickering K.L., Khimi S.R., Ilanko S. The effect of silane coupling agent on iron sand for use in magnetorheological elastomers Part 1: Surface chemical modification and characterization. Compos. Part A. 2015;68:377–386. doi: 10.1016/j.compositesa.2014.10.005. DOI
Sorokin V.V., Ecker E., Stepanov G.V., Shamonin M., Monkman G.J., Kramarenko E.Y., Khokhlov A.R. Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. Soft Matter. 2014;10:8765–8776. doi: 10.1039/C4SM01738B. PubMed DOI
Glavan G., Salamon P., Belyaeva I.A., Shamonin M., Drevensek-Olenik I. Tunable surface roughness and wettability of a soft magnetoactive elastomer. J. Appl. Polym. Sci. 2018;135:46221. doi: 10.1002/app.46221. DOI
Maman M., Ponsinet V. Wettability of magnetically susceptible surfaces. Langmuir. 1999;15:259–265. doi: 10.1021/la980379r. DOI
Lee S., Yim C., Kim W., Jeon S. Magnetorheological elastomer films with tunable wetting and adhesion properties. ACS Appl. Mater. Interfaces. 2015;7:19853–19856. doi: 10.1021/acsami.5b06273. PubMed DOI
Nagappan S., Ha C.S. Emerging trends in superhydrophobic surface based magnetic materials: Fabrications and their potential applications. J. Mater. Chem. A. 2015;3:3224–3251. doi: 10.1039/C4TA05078A. DOI